ページの本文へ

Hitachi

インデックスを表示

用語解説

機械学習の手法の一つ。分析の基準や正解を与えず、学習対象のデータだけを与えることで、データの持つ規則性や傾向をコンピューター自身に発見させる。規則性や傾向の発見には、入力されたデータを特徴量ごとにクラスタリングする方法が使われる。

データが持つ本質や構造を抽出したいときに有効で、膨大なデータから自動で相関関係やパターンを見つけ出せるため、学術研究やデータマイニングでの利用が期待されている。デメリットとしては、学習内容をコンピューターに任せるため学習の制御が難しく、与えるデータの質やクラスタリングに使うアルゴリズムによって分析精度が落ちやすいことが挙げられる。

人気の用語

    最近追加した用語