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1 Introduction

This documentation gives the royal summary of designers’ assessments on

MUGI pseudorandom number generator. MUGI is a pseudorandom number

generator, especially for the purpose of the stream cipher. As is often the

case with other cryptographic primitives, the security of a pseudorandom

number generator is considered high only if the underground evaluation is

good. In this documentation the designers of the MUGI contribute as many

information used to design as possible that would help future assessment.

The documentation is aimed to give the evidence of its expected security

and performance.

This document is organized as follows: In Section 2 we give some no-

tations and terms. The specification is given in [Spec]. In Section 3 we

present some results about the security of MUGI. In Section 4 we show the

implementation of MUGI on software and hardware.

As the result, we conclude MUGI can be one of reliable and efficient cryp-

tographic primitives applicable to encryption and authentication functions.

2 Preliminaries

In this section we describe notations and abbreviations used in this document.

2.1 Notations

⊕ bit-wise XOR
∧ bit-wise AND
|| concatenation of two strings

>>> n n-bit right rotation in a 64-bit register
<<< n n-bit left rotation in a 64-bit register

0x prefix indicating hexadecimal representation
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2.2 Abbreviations

LFSR Linear Feedback Shift Register
PRNG Pseudorandom Number Generator
PKSG Panama-like Keystream Generator (See [Spec].)

3 Security

In this section we describe the summary of the security assessment of MUGI

key-stream generator, which is a kind of PKSG. The prototype Panama was

designed by J. Daemen and C. Clapp, and is a cryptographic module for a

hash function and a stream cipher [DC98]. PKSG is a generalization of a

stream-cipher mode of Panama. The detail definition of PKSG is given in

[Spec].

We think of PKSG as the combination of a LFSR and a round function.

The considered LFSR is relatively simpler and much larger than ones used

in the currently known LFSR-based key stream generators, meanwhile its

round function is similar to ones used in a block cipher. Because of this

structure there are no reliable and thorough methods to evaluate the security

of PKSG at present. In this section we examine the security of MUGI from

many aspects.

Generally any PRNGs must satisfy following two requirements:

(1) The output sequence has good enough randomness.

(2) Any two output sequences generated by different initial data are sig-

nificantly different.

For the assessment of (1), namely the randomness of the output sequence,

we take two kinds of approaches. The first is based on some numerical tests

of the actual output sequence of MUGI. The results are shown in 3.1. The

second approach has been done with some traditional cryptanalysis against

MUGI, which is discussed in 3.2. Subsequently we describe the new method

that is suitable for evaluating the randomness of PKSGs. The detail of this

method and the result are given in 3.3.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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For the evaluations as for (2), we take two inputs into account, namely,

the secret key and the initial vector. We treat this separately in two cases. In

first case, the secret key is fixed. We apply various initial vectors and observe

the randomization of their output sequences. The general study about this

kind of attack can be found in [DGV94]. In this documentation we leave

results in 3.4.

The second case is the one where the variable secret keys are analysed

under a fixed initial vector. This kind of attack can be considered as the

related-key attack. We describe the results in ??. Furthermore we note

about some simple relationship between a secret key and a initial vector in

the same part.

3.1 Randomness test based on FIPS 140-1

In this section we present the results of our statistical randomness tests. The

tests we used to examine the randomness of the output sequences of MUGI

can be found in FIPS 140-1 [FIPS]. The tests are

(1) Mono-bit frequency test

(2) Poker test (four-bit frequency test)

(3) Run test(including detection of a long run)

They were designed for examining short sequences so they are not suited

to sequences used for stream ciphers. We used frequency test using longer

sequences than what is specified with the tests FIPS.

3.1.1 Frequency test

Here we checked the 1-, 2-,4-, and 8-bit frequencies. The method we used was

described by Knuth [Kn81]. Additionally, we applied these tests to 222-,226-,

and 230-bit-length sequences to observe the effect of the sequences length. We

generated 512 sets of initial data by Rijndael. In detail we used output of

random number generator in the standard C library as the input of Rijndael

and used output of them as the initial data.

Table 1,Table 2,Table 3, and Table 4 shows the results of the frequency tests.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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The values in the tables represent how many of the initial data were re-

garded as wrong in each test and the rejection probabilities. For instance, in

the mono-bit frequency test to 230-bit-length sequences, 5 of 512 output se-

quences generated from the initial data were distinguished from truly random

sequences with probability 99%.

Table 1: Results of randomness test (1-bit frequency)
number of rejected key (/512)

data length(bit) Rate of rejection 0.05 Rate of rejection 0.01
222 25 6
226 20 4
230 22 5

Table 2: Results of randomness test (2-bit frequency)
number of rejected key (/512)

data length(bit) Rate of rejection 0.05 Rate of rejection 0.01
222 19 3
226 23 8
230 18 3

Table 3: Results of randomness test (4-bit frequency)
number of rejected key (/512)

data length(bit) Rate of rejection 0.05 Rate of rejection 0.01
222 18 6
226 31 6
230 16 3

The ratio of the number of rejected initial data to the number of tested

ones nearly equalled to the rate of rejection in each test.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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Table 4: Results of randomness test (8-bit frequency)
number of rejected key (/512)

data length(bit) Rate of rejection 0.05 Rate of rejection 0.01
222 17 6
226 18 6
230 18 1

Table 5: Results of randomness test (Run test)
number of rejected key(/512)

data length(bit) Rate of rejection 0.05 Rate of rejection 0.01
222 29 3

3.1.2 Run test

The method we used was described by [MOV97]. The method we generated

initial data by was same as 3.1.1.

The values in the tables represent how many of the initial data were regarded

as wrong in each test and the rejection probabilities. For instance, in the test

to 222-bit-length sequences, 3 of 512 output sequences generated from the

initial data were distinguished from truly random sequences with probability

99%.

Table 5 shows that the ratio of the number of rejected initial data streams

to the number of tested ones nearly equalled the rate of rejection in the test.

On equal terms with above tests the longest run was 31 long and the number

of the run was 1. The expected value that a run of length 31 exists in a

222-bit stream is 2−11. Detection of a run of length 31 is expected once by 4

times because we generated 512 the set of initial data. Hence this result is

appropriate.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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3.2 Comments on known evaluation methods

3.2.1 Period

A secure PRNG requires a long period matching the length of the secret

parameter. For each secret key K and each initial vector I, the MUGI

output sequence should have a period longer than 2128 because the MUGI

key length is 128 bits.

Estimating the period of the MUGI output sequences is difficult because

its update function is non-linear. However, its huge internal state and the

design of ρ imply that the period of its output sequence is longer than that

generated by the OFB-mode of a 128-bit block cipher.

3.2.2 Linear complexity

The linear complexity is efficient when the update function is LFSR. There-

fore, we think applying the Berlekamp-Massey algorithm to MUGI is difficult.

3.2.3 Divide-and-conquer attack

A divide-and-conquer attack can be used when the PRNG has several internal

states and one of them has an independent update function. Using this

assumption, an attacker hipothesizes this part of the internal state at first.

Then he can work out this part in all round.

However, a PKSG generally has a huge internal state and it is impossible

to isolate its update function. Thus, we conclude that applying divide-and-

conquer attack to MUGI is difficult.

The only possibility using this kind of attack against MUGI is by using

a re-synchronization method. If the initialization is insufficient, some of the

internal states may be conjectured with significant probability. This kind of

attack is considered in 3.4.3.

3.3 Optimal evaluation for PKSG

There are various techniques for evaluating the randomness of a bit string,

but almost all of them require actual bit strings and calculate their statistical

property. When the bit strings are generated by a PRNG based on LFSR,

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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many theoretical attacks, such as a correlation attack, are possible. However,

as we mentioned in 3.2, these techniques can not be used against the PKSGs

output sequence.

We note that the PKSG’s structure is similar to that of block ciphers (See

[WFT01] [WFST01a].) and examine the possibility of using linear cryptanal-

ysis, which is known as an effective attack against all block ciphers.

3.3.1 Differential / linear characteristics of F-function

The MUGI F-function has a SPN-structure and consists of key-XORing,

byte-wise non-linear transformation using S-box, byte-wise linear transfor-

mation (described as a 4× 4 matrix M), and bytes shuffling (see Figure 1).

S

M

S S S S S S S

8 8 8 8 8 8 8 8

M

F-function

Buffer

Figure 1: F-function of MUGI

The S-box and the matrix M are the same as those used in AES [DR99].

Hence, the maximum differential and linear probability of S-box are 2−6 and

the branch number of the matrix M is five. Note that the linear probability

is normalized.

Next consider a differential characteristic having two F-functions as in

the following:

∆0
F−→ ∆1

F−→ ∆2

The probability of this characteristic is less than 2−30. Furthermore when

∆0 = ∆2, more than ten active S-boxes are required in this differential char-

acteristic. Therefore the probability is less than 2−60.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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The maximum probability of a linear characteristic that has two F-functions

is the same as that for the differential characteristic.

Γ0
F−→ Γ1

F−→ Γ2

The probability of the linear characteristic above is less than 2−30. If Γ0 = Γ2,

the probability is less than 2−60.

3.3.2 Application of linear cryptanalysis

Linear cryptanalysis is an attack used against block ciphers. It observes a

linear combination of plural bits that consists of the input block and the

output block. The attack is effective when there is a linear combination with

a value that is not exactly uniform. This technique offers a means to observe

the linear correlation between the input and the output blocks.

The evaluation technique that we propose calculates a linear combination

of plural bits that consists of some output units. This requires constructing

a linear approximation that consists of output units. Applying this tech-

nique to PKSGs is more difficult than applying to block ciphers because the

buffer (This corresponds to the round keys for block ciphers) is dynamically

updated. Therefore, we give up constructing actual linear approximations

and examine calculating the lower bound of the number of active S-boxes

required for any possible linear approximation.

Consequently, this evaluation method cannot distinguish the output se-

quence from a truly random sequence.

Theorem 1 When the lower bound of the number of active S-box for MUGI

is more than 22.

Here, we present the proof of this theorem. As previously mentioned, we

have to construct a linear approximation consisting of only output units for

using linear cryptanalysis against PKSG. This approach can be separated

into two steps as follows:

1. Constructing a linear approximation of ρ

2. Searching a path including the buffer

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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We illustrate each step below.

The linear approximation of ρ

First, we transform ρ for easy evaluation as shown in Figure 2. Hereafter,

”ρ” represents transformed ρ.

F

G

F

G

F
F

G

F

G

Figure 2: Equivalent transformation of ρ

Any linear approximations consisting of one or plural rounds are given

as the combination of the two following approximations (see Figure 9 for

reference):

Γ1 · a(t)
0 ⊕ Γ2 · a(t)

2 = Γ2 · a(t+1)
0 , (1)

Γ1 · a(t)
0 ⊕ Γ1 · a(t+1)

2 = Γ2 · a(t+1)
0 (2)

The symbol ”·” indicates the inner product. The thick line in Figure 9

illustrates the active path. Each of the equation (1), (2) gives a linear ap-

proximation consisting of only one F- (or G-) function.

We show some important paths in Appendix (Figure 10). Only the five

paths shown there assure that the number of active S-boxes is greater than

five. Note that the branch number of matrix M does not assure the number

of active S-boxes for a linear approximation, even if it includes several active

F-functions. This property is quite different from those of block ciphers.

Next, we search for a path including the buffer that gives a linear approx-

imation consisting of only output units. For PKSGs, the number of rounds

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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is not given, i.e. they have the possibility of constructing a linear approxi-

mation consisting of any rounds. This feature makes it difficult to search all

paths.

Conditions required of all linear approximations

We pay special attention to two rounds, the first and last round of the

path. These rounds and their neighbors must meet some required conditions.

For example, all input masks of internal states must be 0. We classify the

paths by using these conditions and calculate the lower bound of active S-

boxes for each case. Hereafter, we denote the first round as ts, the last

round as te, and the lower bound of active S-boxes of each path as AS. The
maximum linear probability of the MUGI S-box is 2−6, so it can be assumed

that the linear correlation of the output sequence of MUGI is small enough

if there is no linear approximation with AS < 22.

In addition, noticing the active mask of the data from state a to buffer b,

we easily characterize the iteration expression.

the mask that is applied to the data XOR-ed from state a to buffer b

must concatenate plural paths. We denote this mask as Γ(D)(t).

First, we consider the first round and last round of the path. The value

of the input mask for all units of the buffer and their state is zero at the

first round, and only the mask for an output unit Out[ts] is active. Only two

paths, Type 1 and 3 in Figure 10, satisfy this condition. The last round is

the same as the first round, so the possible paths at round te are only those

shown as Type 1 and 2.

Next we consider the influence of the buffer to ρ. The Γ(D)(t) is 0 from

round ts to ts+4 because all input masks at the first round are 0. In addition,

the input mask from the buffer to G-function must be active, so Γ(D)(ts+5)

is active. In a similar manner, Γ(D)(t) is 0 at round te − 5 ≤ t ≤ te and is

active at round te − 6.

Calculating the lower bound of the number of active S-boxes

Hereafter we denote an active F-function as 1, and a zero approximated

F-function as 0. For example, when an F-function is active and a G-function

is not active at round t, we denote this as Γ(a)(t) = (1, 0)

The search path (or calculating the lower bound of AS) is separated in

several cases. The first condition are the followings:

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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Condition T1: There is a round i(2 ≤ i ≤ 7) such that

(Γ(a)(te−i),Γ(a)(te−i+1)) = ((0, 0), (1, 1)).

Condition T2: For all rounds i(1 ≤ i ≤ 7),

Γ(a)(te−i) �= (0, 0).

Condition T1 and T2 are complementary.

We consider a similar condition at rounds ts to ts + 4 when

(Γ(a)(ts),Γ(a)(ts+1)) = ((1, 1), (0, 0))

is satisfied:

Condition H1: Γ(a)(ts+i) = (0, 0), 1 ≤ i ≤ 4,

Condition H2: Complemented condition of H1.

Now we calculate the lower bound of AS in the following four cases:

A. First round: Type 1, Last round: Type 1

B. First round: Type 1, Last round: Type 2

C. First round: Type 3, Last round: Type 1

D. First round: Type 3, Last round: Type 2.

(1) Case A

In this case AS ≥ 20 because both the first round and last round are

Type 1. In addition, Γ(D)(te−11) is active.

If the condition H2 is satisfied, the path includes more active F-functions

with Type 1 or 3, so AS ≥ 25 is derived.

On the other hand, if the path satisfies condition H1, Γ(a)ts+5 �= (0, 0).

Additionally, Γ(D)(ts+6) and Γ(D)(te−6) are active and Γ(D)(te−7) is a

zero mask. So the number of rounds te − ts must be greater than 14.

These results and the fact that Γ(D)(te−6) is active demonstrate that

Γ(a)(te−6) �= (0, 0) or Γ(a)(te−7) �= (0, 0). Therefore AS ≥ 22 in this

case.

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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(2) Case B

In this case no less than 15 active S-boxes are assured.

First, we consider the case when the condition T1 is satisfied. Then

AS ≥ 20 because the path includes another path of Type 3. If Γ(a)(te−6) �=
(0, 0), obviously AS is not less than 25. Additionally, if the round of

Type 2 (It must occur because of the condition T1.) is located before

round te − 4, AS ≥ 22. Therefore, we only have to consider the pos-

sibility of Γ(a)(te−2) = 0. Then Γ(D)(te−10) is active, so AS ≥ 22 is

demonstrated in the same manner as in the last half of case A.

Next we consider the assumption of T2, AS ≥ 21 by definition. In this

case, if the path includes Type 4 or 5, AS ≥ 24 is derived. Else, one

Γ(D)(t) is active every 2 rounds at round te − 12 to te − 7. Thus, AS
is not less than 24.

(3) Case C

Here, four more active S-boxes are added to 15 active S-boxes derived

from the conditions for case C. At the rounds between ts+1 and ts+4,

all rounds have an active F-function or there is at least one Type 3

path.

Furthermore, in a similar manner to that shown above, the path around

the last round can be restricted as follows:

Γ(a)(te−i) = (0, 0), 1 ≤ i ≤ 6.

Then

Γ(D)(te−i) = 0, 7 ≤ i ≤ 9.

So, the rounds between te − 10 and te − 7 must have not less than four

active S-boxes. This equals AS ≥ 23.

(4) Case D

In this case no less than 19 active S-boxes are assured. If the condition

T2 is satisfied AS ≥ 22 in the same manner as in Case C.

Suppose condition T1 is satisfied and the path of Type 3 occurs at

round te − i0. The path between round te − i0 + 1 and te − 1 assures

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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no less than i0 − 1 active S-boxes, AS ≥ 19 + (i0 − 1). Therefore, we

can require that i0 ≤ 3 in the same manner as in Case B.

Assuming that Γ(D)(te−10) is active, i.e. the round ts + 5 is not equal

to te − 7. We have not counted the active S-box in round te − 7. Thus,

we can once again require that i0 ≤ 2. Iterating in a similar manner

derives that AS ≤ 22 in all cases.

3.3.3 Other attacks

Now we discuss some other attacks against block ciphers such as differential

cryptanalysis, higher order differential attack, and interpolation attack. All

of these attacks are chosen plaintext attacks. Applying these attacks to

PKSG should be difficult (We consider them here as a method of evaluating

its randomness).

Generally, it is impossible to get the required chosen plaintexts from the

output sequence. For example, if the attacker can construct a distinguisher

that consists of 16 output rounds, the number of the possible outputs is

264×16. This means that the computational complexity required to get one

chosen plaintext is more than 264×8.

In addition, consider using differential cryptanalysis as an example. When

the attacker searches the differential characteristics as described in 3.3.2, the

attacker assumes the possibility of being able to observe all of the internal

states at some round. This assumption is not valid if the initialization is

sufficient.

3.4 Re-synchronization attack on MUGI

Next we consider the possibility of using re-synchronization attack [DGV94]

against MUGI.

First, we need to make a brief explanation of re-synchronization attack.

Re-synchronization attack can be used against keystream generators, which

have not only a secret key, but also a public parameter. It is an effective

attack if the initialization of the algorithm is insufficient. Under the as-

sumption that the secret key is fixed, the attacker first searches for some

relationship between the public parameters and corresponding outputs. If

some relationship has a high probability, he can guess information about the

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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secret key from it. For example, linear cryptanalysis on the counter mode of

a block cipher is a type of re-synchronization attack.

We chose differential and linear characteristics for evaluating the relation-

ship between inputs and outputs. The attacks against block ciphers using

these characteristics are well known as differential cryptanalysis [BS93] and

linear cryptanalysis [Ma94].

The design of a PKSG, especially its ρ function, is quite similar to a

block ciphers’ design. This suggests that these two statistical properties are

well suited for evaluating the relationship between the initial vector I and a

corresponding internal state.

3.4.1 Differential and linear path of ρ without outputs

In our discussion, we neglect XOR to the buffer and outputting, i.e., we

consider only the iteration of ρ and evaluate its differential and linear char-

acteristics. We can apply these evaluation methods in the same way as they

are applied to block ciphers.

In our evaluation, we search all differential and linear paths by unit and

check on the active F-functions. The maximum differential and linear char-

acteristics are 2−6 and the branch number of the linear transform is five. The

number of active F-functions does not assure the number of active S-boxes

because the F-function consists of a one-layer SPN structure. However, if

the number of active F-functions is not less than ten for each unit a
(t)
i , it can

be considered the relation between the initial vector I and the state a(t) at

round t is small enough.

Table 6: Number of active F-functions in the differential and linear charac-
teristics of ρ

Number of rounds · · · 11 12 13 14 15 16 17 18 19 20 21

Differential · · · 4 5 6 6 6 7 8 8 8 9 10
Linear · · · 4 5 6 6 6 7 8 8 8 9 10

Table 6 shows the minimum number of active F-functions in all units of

state a for each attack. Note that we allow for all condition of the initial

Copyright c©2001 Hitachi, Ltd. All rights reserved.
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data of state a in the calculations above.

3.4.2 Resistance against re-synchronization attack

Table 6 shows the relationship between the initial vector I and corresponding

state a(t) transformed by t iterations of ρ. It implies that more than 21

iterations of ρ have no differential and linear characteristics with a probability

higher than 2−128.

In the initialization of MUGI, 16 rounds transformed only by ρ are applied

after setting the initial vector I. Afterwards, 16 rounds transformed by

Update are applied. However, buffer b influences the differential and linear

characteristics of state a only after round −9, i.e., 22 rounds after setting I.
Therefore, we conclude the relationship is too small to observe after round

t > 0.

3.4.3 Combination of divide-and-conquer attack and
re-synchronization attack

Table 6 suggests that some units of buffer b at round 0 have a little relation

to corresponding initial vector I. However, the differential characteristic con-

sists of an output sequence and the buffer has more than two buffer-units.

The relationship between any of them and I is quite small. Therefore, no at-

tacker can observe that relationship. The conditions for linear cryptanalysis

are the same.

3.5 Design and analysis of the key setup

We designed the key setup algorithm so that the resultant initialization of the

buffer and the state is enough randomized to generate a secure pseudorandom

sequence after the initialization.

We treat the evaluation of the key setup, dividing four aspects, each of

which is discussed independently.

3.5.1 (Im)possibility of the linearly-keyed buffer

Generally speaking, the buffer value is initialized non-linearly with respect to

the raw key value because of the update function ρ. However in some special
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cases, the non-linearity may reduce. One of those cases are ones when many

inputs to the ρ functions are the same. This may cause the extremely simple

linear relations between the input (the raw key) and the output (the initial-

ized buffer values). In this part of the document, we consider the possibility

of keys that initializes buffer with extremely simple linear relations.

There are two stages in the buffer initialization, namely (A) the key-

dependent initialization, and (B) the randomization after setting the initial

vector, IV hereafter. At first, we note the remark, if the algorithm takes

the key such that the buffer initialization by (A) has sufficiently high non-

linearity, then it must hardly happen that the resultant buffer (just before

outputting the pseudorandom sequence) contains linear relations (with no

more than 16 word unknown variables). ¿From this remark, the analysis

here has two objectives: verification of the fact that the used function is

sufficiently non-linear for most of the key space, and the size of the keys that

generate the linear buffer is small enough and negligible.

We also remark that for those limited number of weak keys (in the sense

of the linear buffering) there are another non-linear randomization onto all

buffer value after injection of the IV . This contributes further mixing of

buffer and state properties. Consequently we conclude that the key setup

sufficiently randomizes the buffer with respect to the linear-buffer initializa-

tion.

Case 1:(One-round iteration)

Theorem 2 ρ function doesn’t have any fixed points, i.e., no key generates

the same output for all buffer units.

Proof

Let (a0, a1, a2) and (b0, b1, b2) be the input and the output of the ρ function

for the key setup. Remember that in this stage the buffer injection to the F

function is zero. The definition of ρ is followed by those relations between a

and b:

b0 = a1, (3)

b1 = a2 ⊕ F (a1, 0)⊕ C1, (4)

b2 = a0 ⊕ F (a1, 0)⊕ C2, (5)
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If (a0, a1, a2) is the fix point, then the following relation must hold as well.

bi = ai, i = 0, 1, 2. (6)

¿From Equations (3), (4), (5), and (6), we have the following condition for

the fix point a.

C1 = C2.

¿From the definition of C1 and C2, the above condition is always false. Hence,

the ρ function doesn’t have any fixed points.

Case 2: (Two-round iteration)

Theorem 3 A structure with two iterations of the ρ function doesn’t have

many fixed points, i.e., no obvious weak key classes with respect to the two-

value initialized buffer do not exist.

Proof

The two-round structure of the ρ function itself contains a number of the

fixed points. However, the padding rule excludes most of them from the

possible input.

In this proof of the theorem, we take the padding rule into account. Let

a0 and a1 to be the upper and lower half of the secret key. Then the padded

key word a2 is defined as follows:

(a0 <<< 7)⊕ (a1 >>> 7)⊕ C0.

Noticing the linearity and independence of the a2 generation. When we study

the properties of the iterative keys, we can replace the original key embedding

with the following one without loss of generality:

a0 = ((a1 >>> 7)⊕ C0 ⊕ a2) >>> 7,

a1 = [the upper half of the secret key],

a2 = [the lower half of the secret key].

Let α = F (a1, 0), and β = F (a2 ⊕ α ⊕ C1, 0). The output of the two-round

ρ function is deterministically described as

(a2 ⊕ α⊕ C1, a0 ⊕ α⊕ C2 ⊕ β ⊕ C1, a1 ⊕ β ⊕ C2).
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Therefore, the necessary conditions for the triple (a0, a1, a2) to generate the

two-round iterative output is

a1 = arbitrarily chosen,

a2 = F−1(β, 0)⊕ C1 ⊕ F (a1, 0),

a0 = a1 ⊕ C1 ⊕ β ⊕ C2 ⊕ α

= a2 ⊕ C1 ⊕ α.

For a fixed a1 value (264 possibilities), a2 has one possibility in average be-

cause a2 is defined by the equation

a2 = f−1(a2 ⊕ Ca, 0)⊕ Cb,

where Ca and Cb are a1 dependent constant values. a0 is uniquely determined

by a1 and a2. In total, without the consideration of the padding rule, the

triple (a0, a1, a2) has about 2
64 two-round iterative buffer initialization. Our

estimation is quite rough but the most of those triples are impossible to

generate out of the secret key due to the padding rule. We expect the size to

generate the class of the weak key is too small to mount a meaningful attack.

Case 3: (Three-round iteration)

Theorem 4 A structure with three iterations of the ρ function does not have

any fixed points.

Proof

In this part, the proof does not make use of the padding rule. Let the triple

(a0, a1, a2) be the initial secret key. Then, the resultant state value after

three rounds is (a
(3)
0 , a

(3)
1 , a

(3)
2 ), where

a
(3)
0 = a0 ⊕ α⊕ β ⊕ C1 ⊕ C2,

a
(3)
1 = a1 ⊕ β ⊕ γ ⊕ C1 ⊕ C2,

a
(3)
2 = a2 ⊕ γ ⊕ α⊕ C1 ⊕ C2,

α = F (a1, 0),

β = F (a2 ⊕ α⊕ C1, 0),

γ = F (a0 ⊕ α⊕ β ⊕ C1 ⊕ C2, 0).
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If the triple (a0, a1, a2) generates three-round iterative output, then

(a0, a1, a2) = (a
(3)
0 , a

(3)
1 , a

(3)
1 ).

Therefore we have those three necessary and sufficient conditions:

α⊕ β = C1 ⊕ C2, (7)

β ⊕ γ = C1 ⊕ C2, (8)

γ ⊕ α = C1 ⊕ C2. (9)

¿From Equations (7), (8), we have

γ ⊕ α = 0. (10)

This equation (Equation (10)) conflicts the rest of the condition specified by

Equation (9). Therefore no key generates the three-round iterative output.

Case 4: (Considerations on more than 3-round iteration) We also

considered the cases more than three. However, because of the following

reasons we conclude that any case does not contain any weak key class for

which an attacker can detect more efficient than the weak-key class exhaus-

tive search.

The size of the applicable secret keys: Normally the necessary condi-

tion to generate the iterative output specifies two complicated word-

wise equations, that means only 264 possible initial 192-bit states may

expose this property in average. As is the case with Case 2, the

padding rule should effectively avoid the weak-key classes of such keys.

The effectiveness of the iteratively initialized buffer: The effectiveness

of the iteratively initialized buffer must be reduced due to the subse-

quent buffer-state mixing. Moreover, the buffer contains at least four

values that looks effectively avoid the simple properties during the ini-

tialization.
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α
α

α

a2α
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Figure 3: One-round iteration

3.5.2 Square-attack variants

Because of the highly byte-oriented structure, some of the Square attack

[DKR97] variants can be considered. The Square attack is the one that

is currently most successful attack against the block ciphers with the SPN-

structure, e.g., Rijndael, the proposed AES. We examine the applicability of

the attack and investigate the possible properties. Consequently we conclude

that any possible variants of the Square attack do not concern the security

of the full specification of the MUGI pseudorandom number generator.

The Square attack against a block cipher is basically a chosen-plaintext

attack where an attacker chooses a number of related plaintext blocks each

of which is typically differentiated only in a byte or a word. Because of the

saturation at the input of a non-linear function, the attacker can expect to

control the intermediate values in some extent. ¿From the ciphertext side,

the attacker partially decrypts the intermediate value which is still controlled

because of the saturated plaintext blocks. If the attacker guesses the key for

the partial decryption, then the attacker can distinguish the correct round

key and incorrect ones.

In the stream cipher, an attacker must try to differentiate either key or

IV values to mount this attack. Therefore the possible applications of the

Square attack must be either the related-key cryptanalysis or the chosen-

initial-vector attack.
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Figure 4: Two-round iteration

Related-key attacks: At first, we define the model of the attack. We as-

sume that the attacker does not know the key value. To mount the saturation

property, the attacker can run a number of key initializations, whose keys

are differentiated only in a part of the key value, especially in this discus-

sion we will concentrate on a word-differentiated key-dependent runs. The

attacker cannot observe anything until the pseudorandom number sequence

comes out. We check if the attacker may find any properties at the output

sequences amongst a number of runs.

The saturated key group will inject the saturation property during the

buffer initialization. At first, we investigate how buffers are initialized with

the properties. For simplicity, we ignore the key padding rule so that we

give the attacker the most flexibility for setting the initial state values. Let

Λ the property of a intermediate word such that in each run the concerning

word has different value, i.e., the word is saturated. Let O to be the property

that for all runs the value is constant. Also we introduce the most weakest

property “balanced” denoted by Φ that means the XOR-summation over all

runs is zero. If the word is neither of them, namely uncontrollable, then

we use the notation ∗. If the word triple (A,B,C) has the properties of Λ,
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F

γ γ

C2

a1β C2

a1β C2γ C1

a0 C2α C1β

C 1a2γ C 2α

Figure 5: Three-round iteration

O, and Φ for the word A, B, C, then we write (A,B,C)
p→ (Λ, O,Φ), or

A
p→ Λ, B

p→ O, and C
p→ Φ.

Obviously the most effective word to inject the saturation is the word that

affects other word the last. We analyze the case of (a0, a1, a2)
p→ (Λ, O, O).

Remember the output of the tth round is denoted by (a
(t)
0 , a

(t)
1 , a

(t)
2 ). We

simply trace the property and show the results in Table (7). Hence, the

initial values of the buffer bi have the following properties depending on the
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Table 7: The word properties in each intermediate values

Intermediate value Word property

(a
(0)
0 , a

(0)
1 , a

(0)
2 ) (Λ, O, O)

(a
(1)
0 , a

(1)
1 , a

(1)
2 ) (O,O,Λ)

(a
(2)
0 , a

(2)
1 , a

(2)
2 ) (O,Λ, O)

(a
(3)
0 , a

(3)
1 , a

(3)
2 ) (Λ,Λ,Λ)

(a
(4)
0 , a

(4)
1 , a

(4)
2 ) (Λ,Φ,Φ)

(a
(5)
0 , a

(5)
1 , a

(5)
2 ) (Φ, ∗, ∗)

(a
(6+)
0 , a

(6+)
1 , a

(6+)
2 ) (∗, ∗, ∗)

index i:

bi
p→




O : i = 15, 14,
Λ : i = 13, 12,
Φ : i = 11,
∗ : i = 10, 9, ..., 0

(11)

Note that this does not mean that the attacker is able to control the in-

termediate value up to b11. In fact, b11 can be expressed by other buffer

value and single F -function evaluation (see the discussion below concerning

to non-linear buffer relation). However, thanks to the subsequent random-

ization after IV injection, this property must be destroyed until the output

sequence is generated. Therefore we think the related-key attack based on

the Square attack is inapplicable.

Chosen IV attacks: This attack may be more practical than the above

related-key cryptanalysis. However, the IV does not inject any value to

the buffer until the 16-round mixing completes. Taking the number of con-

trollable rounds shown above into account, 16-round mixing is sufficient to

destroy the saturation property due to IV .

3.5.3 Non-linear buffer relation

The initial buffer is generated only by the secret key. The key setup algorithm

generate each initial unit per a round. Since the round function of the key
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setup is far from the random permutation, there are relations between initial

buffer values. We describe the relations between buffer values in this part of

the document.

Since the round function does not take the buffer feedback, two F -functions

in each round takes the same input. Therefore, while the calculation of the

ρ-function is lighter, the linear relation gets much simpler. We note that

several buffer units can be expressed with a single F -functions and linear

sums with other buffer unit. Here we show the table for a simple example of

buffer relations:

b15 = a1,

b14 = a2 ⊕ F (b15, 0)⊕ C1,

b13 = a0 ⊕ a2 ⊕ b14 ⊕ F (B14, 0)⊕ C2,

bi = a0 ⊕ a1 ⊕ a2 ⊕ bi+1 ⊕ bi+2 ⊕ F (bi+1, 0)⊕ C2,

i = 12, 11, 10, . . . , 0.

3.5.4 All-byte equivalence

We also note an interesting property in the Panama-like key stream genera-

tor. Due to the structure of F -function, the following preliminary property

can be mentioned.

Property. All-byte equivalence in F function If the all bytes in the

input of the S-box layer are the same, then, the corresponding output has

the same property, i.e., all the output bytes are the same as well.

Proof

Let Ωn be the property of a n-bit register such that all bytes in the register

has the same byte value. Obviously, if the 32-bit input of S-box layer has

the property Ω32, so does the output. Interestingly, an MDS doesn’t always

have the property Ω, whereas the MDS used in MUGIand Rijndael has the

same property Ω32. Let (x1, x2, x3, x4) and (y1, y2, y3, y4) be the input and

the output of MDS. Then,

y1 = 0x02x1 ⊕ 0x03x2 ⊕ 0x01x3 ⊕ 0x01x4,

y2 = 0x01x1 ⊕ 0x02x2 ⊕ 0x03x3 ⊕ 0x01x4,
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y3 = 0x01x1 ⊕ 0x01x2 ⊕ 0x02x3 ⊕ 0x03x4,

y4 = 0x03x1 ⊕ 0x01x2 ⊕ 0x01x3 ⊕ 0x02x4.

If (x1, x2, x3, x4) has the property Ω32 or equivalently x1 = x2 = x3 = x4,

then we obtain y1 = y2 = y3 = y4 = x1. The output of MDS has the same

property Ω32. ¿From this property, we develop the property to F -function’s

property. There are two S-box and MDS streams in the F -function. To

control the property Ω for the whole F -function the 64-bit input of S-box

layer must be Ω64.

Using this property of F -function, we can develop the property to the

general structure in some extent. Remember both of the two inputs to F -

function have the property Ω64, then the output has the same property.

Accordingly if the all units (64-bit registers) in the buffer and the state

has the property Ω64 (it is not necessary that bytes beyond the unit is the

same), the non-linear function F does not change the property. Thanks

to the subsequent constant XORing after two F functions, this property is

immediately destroyed. Consequently because of the constant XORing we

think the attack based on the property Ω is not effective to attack MUGIkey

stream generator.

4 Hardware Implementability

MUGI is designed so that the algorithm can be implemented to be suitable

in both software and hardware implementations. In both cases, the imple-

mentation achieves the high performance and low implementation cost. In

this part of the documentation, we report software and hardware implemen-

tations of MUGI pseudorandom number generator.

4.1 Software implementation

The pseudorandom number generator MUGI adopts some primitive parts

used in AES, as well as the ρ function. The other operations used in

MUGI are limited only to simple logical operations, e.g., exclusive-or and

bit-rotation. From these profile, MUGI is expected to achieve high perfor-

mance in any kinds of implementation platforms.
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In this part, we report the software implementation of MUGI on the

generic processor, Intel r©Pentium r©III processor. Our implementations we

report here are all implemented by C language. Please refer to Table 8 for

the detail information of the environments where MUGI was implemented.

Table 8: Software implementation environments
Hardware CPU Pentium r©III 800MHz

RAM 512 Mbyte
Software OS Microsoft r©Windows r©2000

Compiler Microsoft r©Visual C++ 6.0
Language ANSI C

Optimizing option Speed

The implementation cost required for the environments specified in Table

8 is also shown in Table 9.

Table 9: Memory consumption
Code size 619 steps

work area initialization 4.6 Kbyte
output generation 4.2 Kbyte

The code size is the number of lines in the source code that excludes

the blank and comment lines. The workarea was also measured without the

memory used to store the plaintext and the ciphertext.

In this environment, MUGI can achieve the performance of 294 Mbps.

In Table 10, the figure is shown in clock/byte. The resultant speed is based

on the measurements on the duration for 1.2 million iteration of the update

function without outputs, i.e. we neglect the delay required for memory

access. The initialization takes about 15000 clocks.

Since the fundamental data size in MUGI is 64 bit, further performance

advantage can be expected in the software implementation on 64-bit proces-

sors.
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Table 10: Software performance
Initialization 15029 clock

Output sequence 21.8 clock/byte

4.2 Hardware implementation

In this section, we investigate the hardware implementation of the MUGI

pseudorandom number generator. Toward the hardware evaluation, we fo-

cused especially on these two implementation profiles.

(1) Speed optimized circuit

(2) Gate size optimized circuit

We summarize the discussion and results of the hardware implementa-

tions. We used the hardware evaluation tool, Synopsis Design Compiler,

with the cell library Hitachi ASIC HG73C (0.35µ m CMOS). In the speed

optimized circuit, we evaluated the hardware can achieve the performance

2.9 Gbps with the size, 26 Kgate.

4.2.1 Speed optimized circuit

In the circuit design optimized in the performance, the applicability of the

parallel computations are our most concerns. We analysed the parallelizabil-

ity in detail. MUGI can be seen as an example of the PKSG, which consists

of the internal state and the state-updating function. The output sequence

is generated out of the current internal state. The internal state is updated

according to the state-update function that defines the next state. Genera-

tion of the internal state at the time t+ 1 requires the previous state at the

time t. Therefore, implementation of plural update function in parallel will

not contribute very much for speeding up one sequence generation.

We investigate the circuit with all the primitive operations of the state-

update function of MUGI, in which we try to make the circuit have as many

parts in parallel as possible.

We show the block diagram of the considered hardware structure of whole

MUGI circuit in Figure 6. It consists of several blocks of logical circuits: the
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registersK and I for the key and the initial vector, the state register a, buffer

register b, the key-input processing block ini1, the IV-input processing block

init2, the ρ-function, λ function block, and the logic-control block.

The control block operates each process block in response to the external

signal. Each process block operates independently and in parallel. The

output for a round is generated every clock signal.

a

ρ λ

b

K

init1

I

init2
control

mugi

Figure 6: MUGI hardware block diagram

The block diagram of the ρ-function block is drawn in Figure 7. The

ρ-function optimized for the performance consists of two F -functions and

64-bit exclusive-or operation. Each F -function includes three parts, namely,

the block with eight S-boxes, the linear transformation block (MDS), and

eight 8-bit exclusive or. The circuit of ρ-function can calculate the necessary

date for one unit output generation within a clock-cycle.

The resultant implementation following the above strategy is summarized

in Table 11.

Table 11 shows the size of each module. MUGI(whole structure) is the

resultant overall structure with all modules. Because of the optimization by

the hardware evaluation tool, the total gate count gets smaller than the sum

of every component. When we link all the modules, the tool also optimized
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Figure 7: ρ-function structure(speed optimized)

Table 11: Gate size(speed optimized)
module incl. lower modules module stand alone

gate size gate size

mugi(whole structure) 26068 26068
mugi 28918 14034
control 133 133

ρ 12562 360
F function 6101 128

MDS 307 307
S-box 670 670
init 181 181
λ 1826 1826
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the gate size.

In this implementation, the throughput can achieve 2922 Mbps operating

at 45.7 MHz. This throughput is for the whole circuit of MUGI. In addition,

the initialization requires 1095 ns.

4.2.2 Gate count optimization

In the design of the gate-count optimized circuit, we analyse the structure

in order for parts to share circuits of the same functionality. This decreases

the total gate count. We start from the previous speed optimized circuit. In

the overall block diagram of MUGI depicted in Figure 6, we find the similar

functionality between init1 and init2, the key-input process block and the

IV-input process block. From this observation, the circuit saves two 64-bit

exclusive-ors. On the other hand, if we do so, the input of the concatenated

block must have 128-bit selector to switch the key register K and the IV -

register I. Taking account of those two gate saving and additional gate, the

concatenation of init1 and init2 does not contribute gate saving very much.

Observing the structure of ρ-function in Figure 7, it contains 16 S-boxes

and four linear transformations. We try to reduce the size of the circuit,

shrinking these blocks. More specifically, we implement one linear transfor-

mation and four S-boxes instead of four and sixteen, respectively. We show

the block diagram of the new construction in Figure 8. The ρ-function block

shown in Figure 8 requires four clocks to calculate the data necessary for

one stage output sequence, which makes the throughput of this circuit about

one quarter of that of the speed optimized circuit. The input value a1 for

ρ-function changes depending on the output of the ρ-function. To avoid a1’s

changing, the register is put so that the a1 is stored. Consequently, the

three-layer pipelining is applicable to this circuit, which makes the virtual

latency decrease. In total the throughput is improved.

As the result of the above implementation, we show the estimation of the

hardware in Table 12.

Following the above strategy, the throughput is estimated to be 676 Mbps

operated at 42.3 MHz that is without three-layer pipelining. In addition, the

initialization requires 4590 ns. Although we have not evaluated the pipelined

circuit, our rough estimation of three-layer pipelining expects that the addi-

tional 1 Kgate may be required so that the throughput can be 2025 Mbps at
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Figure 8: The structure of the ρ-function(gate-size optimized)

Table 12: Gate size(gate count optimization)
Module incl. lower modules Module stand alone

Gate size Gate size

mugi(total) 18019 18019
mugi 20702 14489
control 250 250

ρ 3774 572
F function 3202 215

MDS 307 307
S-box 670 670
init 181 181
λ 1826 1826
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126.6 MHz and the initialization requires 1531 ns.

4.2.3 Summary

The summary of the hardware implementation evaluated by the designers is

shown in Table 13.

Table 13: The summary of the hardware implementations

Optimization Gate size Clock cycle Throughput Initialization
(K gate) (MHz) (Mbps) (ns)

speed opt. 26.1 45.7 2922 1095
gate cnt. opt. 18.0 42.3 676 4590
(3 layers pipelining) (≥ 19.0) (126.6) (2025) (1531)
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