

HPE ProLiant Compute DL380a Gen12ユーザーガイド

部品番号: 30-4D3D9A55-002-ja-JP 発行: 2025年3月 版数: 2

HPE ProLiant Compute DL380a Gen12ユーザーガイド

摘要

このガイドは、サーバーおよびストレージシステムのインストール、管理、トラブルシューティングの担当者を対象として います。Hewlett Packard Enterpriseでは、読者がコンピューター機器の保守の資格を持ち、高電圧製品の危険性について 理解し、ラック設置時の重量および安定性に関する注意事項に精通していることを前提としています。

部品番号: 30-4D3D9A55-002-ja-JP 発行: 2025年3月 版数: 2

© Copyright 2024-2025 Hewlett Packard Enterprise Development LP

ご注意

本書の内容は、将来予告なしに変更されることがあります。Hewlett Packard Enterprise製品およびサービスに対する保証 については、当該製品およびサービスの保証規定書に記載されています。本書のいかなる内容も、新たな保証を追加するも のではありません。本書の内容につきましては万全を期しておりますが、本書中の技術的あるいは校正上の誤り、脱落に対 して、責任を負いかねますのでご了承ください。

本書で取り扱っているコンピューターソフトウェアは秘密情報であり、 その保有、使用、または複製には、Hewlett Packard Enterprise から使用許諾を得る必要があります。 FAR 12.211 および 12.212 に従って、商業用コンピューターソ フトウェア、コンピューターソフトウェアドキュメンテーション、および商業用製品の技術データ(Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items)は、ベンダー標準の商業用使 用許諾のもとで、米国政府に使用許諾が付与されます。

他社の Web サイトへのリンクは、Hewlett Packard Enterprise の Web サイトの外に移動します。 Hewlett Packard Enterprise は、Hewlett Packard Enterprise の Web サイト以外の情報を管理する権限を持たず、また責任を負いません。

商標

Intel®、Intel® Virtual RAID on CPU (Intel® VROC)、およびXeon®は、アメリカ合衆国およびその他の国におけるIntel Corporationの商標です。

Linux®は、Linus Torvaldsの米国およびその他の国における登録商標です。

Microsoft®、Windows®、およびWindows Server®は、米国および/またはその他の国におけるMicrosoft Corporationの登録商 標または商標です。

VMware®は、米国およびその他の管轄区域におけるVMware Inc.またはその子会社の登録商標または商標です。

すべてのサードパーティのマークは、それぞれの所有者に帰属します。

目次

- コンポーネントの識別
 - 。 フロントパネルのコンポーネント
 - 。フロントパネルのLEDとボタン
 - 。 リアパネルのコンポーネント
 - 。 リアパネルのLED
 - コンポーネントのタッチポイント
 - 内部コンポーネント
 - 。システムボードのコンポーネント
 - システムメンテナンススイッチの説明
 - DIMMラベルの識別
 - DIMMスロットの番号
 - データセンターセキュアコントロールモジュールのコンポーネント
 - ライザーボードのコンポーネント
 - 。 4スロットPCIe x16スイッチボードのコンポーネント
 - 。 GPUライザースロットの番号
 - シングル幅GPUライザースロットの番号
 - ダブル幅GPUライザースロットの番号
 - 。 PCIeライザースロットの番号
 - 。 側波帯ボードのコンポーネント
 - 。 OCPリタイマーカードのコンポーネント
 - 。 HPEのベーシックドライブのLEDの定義
 - 。 EDSFF SSDのLEDの定義
 - 。 ドライブベイの番号
 - SFF (2.5型) ドライブベイの番号
 - E3.Sドライブベイの番号
 - ドライブバックプレーンの命名
 - 。 PDBのコンポーネント
 - 。 電源装置の番号
 - 。 ファン番号
 - ファンモードの動作
 - 。HPE NS204i-uブートデバイスV2のコンポーネント
 - 。 HPE NS204i-uブートデバイスV2のLEDの定義
 - ヒートシンクおよびプロセッサーソケットのコンポーネント
- セットアップ
 - 。 HPEインストレーションサービス
 - ・サーバーのセットアップ
 - 。 動作要件
 - 空間および通気要件
 - 温度要件
 - 電源要件
 - アース要件
 - 。 ラックに関する警告と注意事項
 - 。 サーバーに関する警告と注意事項
 - 。 静電気対策

- 操作
 - 。 iLOサービスポート
 - Intel VR0Cのサポート
 - 。サーバーのUID LED
 - UIDボタンを使用したサーバーヘルスの概要の表示
 - 。 ディスプレイ装置のセットアップ
 - Trusted Platform Module 2.0
 - 。 Trusted Platform Module 2.0のガイドライン
 - 。 システムバッテリの情報
- ハードウェアオプション
 - 。 Hewlett Packard Enterprise製品のQuickSpecs
 - 。ハードウェアオプションの取り付けのガイドライン
 - 。 取り付け前の手順
 - サーバーデータバックアップ
 - サーバーの電源を切る
 - ラックからサーバーを引き出す
 - フロントベゼルを取り外す
 - ラックからサーバーを取り外す
 - 電源装置を取り外す
 - アクセスパネルを取り外す
 - GPUを取り外す
 - GPUケージを取り外す
 - GPUケージを持ち上げて保持する
 - フロント通気パネルを取り外す
 - エアバッフルを取り外す
 - ファンケージを取り外す
 - ケーブルトラフカバーを取り外す
 - リア通気パネルを取り外す
 - ライザーケージを取り外す
 - 。 取り付け後の手順
 - ライザーケージを取り付ける
 - リア通気パネルの取り付け
 - ケーブルトラフカバーを取り付ける
 - ファンケージを取り付ける
 - エアバッフルを取り付ける
 - GPUケージとGPUを取り付ける
 - アクセスパネルを取り付ける
 - サーバーをラックに取り付ける
 - サーバーの電源を入れる
 - 。 冷却
 - 最大システムファンモジュールを取り付ける
 - 。 ドライブ
 - ドライブの取り付けのガイドライン
 - SFF (2.5型) NVMeドライブを取り付ける
 - E3.Sドライブを取り付ける
 - Energy Pack

- HPE Smartストレージバッテリ
- HPE Smartストレージハイブリッドキャパシター
 - 最小ファームウェアバージョン
- Energy Packを取り付ける
- GPU
 - GPUの取り付けに関するガイドライン
 - GPUの取り付け
 - ■構成済みサーバーでのGPU I/0ポートケーブルの接続
- 。管理
 - シリアルポートオプション
 - シリアルポートケーブルの取り付け
- 。 メモリ
 - HPE Smartメモリの速度と取り付け情報
 - DIMMの取り付けに関するガイドライン
 - DIMMの取り付け
- 。 ネットワーク
 - OCPスロットの取り付けルール
 - 0CP NICアダプターの取り付け
 - PCIe NICアダプターをライザーケージに取り付ける
 - PCIe NICアダプターをGPUケージに取り付ける
- 。 OSブートデバイス
 - HPE NS204i-uブートデバイスV2オプション
 - NS204i-u有効化オプション
 - HPE NS204i-uブートデバイスV2を取り付ける
- 。 電源装置
 - 分電盤
 - PDB 2の取り付け
 - 電源装置オプション
 - ホットプラグ対応電源装置に関する計算
 - 電源装置に関する警告と注意事項
 - 電源装置のガイドライン
 - 電源装置の取り付け
- プロセッサーとヒートシンク
 - プロセッサーに関する注意事項
 - プロセッサーヒートシンクアセンブリの取り付け
- ラックマウントオプション
 - レール識別マーカー
 - ラックマウントインターフェイス
 - CMAコンポーネント
 - ラックレールのオプション
 - ボールベアリングラックレールを取り付ける
 - ラックへのサーバーの取り付け:ボールベアリングラックレール
 - ケーブルマネジメントアームの取り付け
- 。 ライザー
 - キャプティブライザーケーブルの取り付け
 - 拡張カードの取り付け

- 。 セキュリティ
 - フロントベゼルオプションの取り付け
 - シャーシ侵入検知スイッチのオプション
 - シャーシ侵入検知スイッチの取り付け
- ストレージ
 - 0CPリタイマーカードの取り付け
- 。 ストレージコントローラー
 - タイプoストレージコントローラーの取り付け
 - タイプpストレージコントローラーの取り付け
- ケーブル接続
 - 。 ケーブル接続のガイドライン
 - 。 ケーブル配線図
 - 。 内部ケーブル管理
 - 。 GPUのケーブル接続
 - 2フロントキャプティブライザーのケーブル接続
 - 4フロントキャプティブライザーのケーブル接続
 - 2スイッチボードのケーブル接続
 - 4スイッチボードのケーブル接続
 - ダブル幅GPUの補助電源ケーブル接続
 - 。フロントPCIe x16キャプティブライザーのケーブル接続
 - 。 リアPCIe x16キャプティブライザーのケーブル接続
 - 。 ストレージのケーブル接続
 - ストレージコントローラーのケーブル接続
 - SFF (2.5型) ドライブストレージコントローラーのケーブル接続
 - E3.Sドライブストレージコントローラーのケーブル接続
 - ドライブの電源ケーブル接続
 - Energy Packのケーブル接続
 - ストレージバックアップ電源のケーブル接続
 - 。HPE NS204i-uブートデバイスV2のケーブル接続
 - 。 DPUの電源ケーブル接続
 - 。 側波帯ボードのケーブル接続
 - 。 ファンのケーブル接続
 - Intel UPIのケーブル接続
 - 。 OCP帯域幅の有効化のケーブル接続
 - 。 シリアルポートのケーブル接続
 - 。 シャーシ侵入検知スイッチのケーブル接続
 - 。フロント1/0のケーブル接続
 - 。 PDUのケーブル接続
 - PDUのケーブル接続:5電源装置構成
 - DPUのケーブル接続:8電源装置構成
- 構成関連情報
 - HPMとDC-SCMのバージョン
 - 。ファームウェアまたはシステムROMのアップデート
 - 。 サーバーの構成
 - 。 ストレージコントローラーの構成
 - 。 HPE NS204i-uブートデバイスV2の管理

- オペレーティングシステムの展開
- 。 セキュリティの構成
- 。 サーバー管理
- 。Linuxベースのハイパフォーマンスコンピューティングクラスターの管理
- ・トラブルシューティング
 - ∘ NMI機能
 - 。 フロントパネルのLED電源障害コード
 - トラブルシューティングの資料
- 安全、保証および規制に関する情報
 - 。 規定に関する情報
 - Notices for Eurasian Economic Union (ユーラシア経済連合)
 - Turkey RoHS material content declaration
 - Ukraine RoHS material content declaration
 - 。 保証情報
- 仕様
 - 。 環境仕様
 - 。 機械仕様
 - 。 電源装置の仕様
 - HPE 1500 W M-CRPS Titaniumパワーサプライ (HPE 1500 W M-CRPS Titanium Hot-plug Power Supply)
 - HPE 2400 W M-CRPS Titaniumパワーサプライ (HPE 2400 W M-CRPS Titanium Hot-plug Power Supply)
 - HPE 3200 W M-CRPS Titaniumパワーサプライ (HPE 3200 W M-CRPS Titanium Hot-plug Power Supply)
- Webサイト
- サポートと他のリソース
 - Hewlett Packard Enterpriseサポートへのアクセス
 - 。 HPE製品登録
 - アップデートへのアクセス
 - 。 カスタマーセルフリペア (CSR)
 - 。 リモートサポート
 - 。 ドキュメントに関するご意見、ご指摘

コンポーネントの識別

この章では、外付および内蔵のサーバーの機能とコンポーネントについて説明します。

サブトピック

<u>フロントパネルのコンポーネント</u> フロントパネルのLEDとボタン リアパネルのコンポーネント <u>リアパネルのLED</u> コンポーネントのタッチポイント <u>内部コンポーネント</u> システムボードのコンポーネント <u>データセンターセキュアコントロールモジュールのコンポーネント</u> <u>ライザーボードのコンポーネント</u> 4スロットPCIe x16スイッチボードのコンポーネント <u>GPUライザースロットの番号</u> PCIeライザースロットの番号 側波帯ボードのコンポーネント 0CPリタイマーカードのコンポーネント HPEのベーシックドライブのLEDの定義 EDSFF SSDのLEDの定義 <u>ドライブベイの番号</u> <u>ドライブバックプレーンの命名</u> PDBのコンポーネント 電源装置の番号 <u>ファン番号</u> HPE NS204i-uブートデバイスV2のコンポーネント HPE NS204i-uブートデバイスV2のLEDの定義 <u>ヒートシンクおよびプロセッサーソケットのコンポーネント</u>

フロントパネルのコンポーネント

SFF (2.5型) ドライブ構成

番号	説明
1	シリアル番号/iL0情報プルタブ 1
2	iL0サービスポート
3	USB 3.2 Gen 1ポート
4	SFF(2.5型)ドライブ ²
5	NS204i-uブートデバイス(オプショ ン)

- 1 シリアル番号/iL0情報プルタブは両面です。片側には、サーバーのシリアル番号とお客様の資産タグラベルが記載されています。反対の面には、デフォルトiL0アカウント情報が記載されています。
- 2 ψ +-//- dU.3 NVMe F > 7 7 δ ψ + F L τ L

E3.Sドライブ構成

番号	説明
1	シリアル番号/iL0情報プルタブ 1
2	iLOサービスポート
3	USB 3.2 Gen 1ポート
4	E3.Sドライブ
5	NS204i-uブートデバイス(オプショ ン)

1 シリアル番号/iL0情報プルタブは両面です。片側には、サーバーのシリアル番号とお客様の資産タグラベルが記載されています。反対の面には、デフォルトiL0アカウント情報が記載されています。

フロントパネルのLEDとボタン

			1
			3
番号	説明	ステータス	定義
1	電源ボタン/システム電源LED $^{\perp}$	緑色で点灯 	システムの電源はオンです
		緑色で点滅	電源投入手順を実行中です
		オレンジ色で点灯	システムはスタンバイ状態です
		消灯	電源が供給されていません ²
2	νμαLED 1	緑色で点灯	通常
		緑色で点滅	iLOが再起動中です
		オレンジ色で点滅	システムが劣化しました ³
		赤色で点滅	システムに重大な障害が発生していま す ³
3	OCP NICのステータスLED ¹	緑色で点灯	ネットワークにリンクされています
		緑色で点滅	ネットワークは動作中です
		消灯	ネットワークが動作していません
4	UIDボタン/LED 1	青色で点灯	アクティブ化済み
		青色の点滅	 毎秒1回点滅-リモート管理または ファームウェアアップグレードを実行 中です
			 毎秒4回点滅 - iL0の手動再起動シー ケンスが開始されました
			 毎秒8回点滅 - iL0の手動再起動シー ケンスが進行中です
		消灯	非アクティブ化済み

すべてのLEDが同時に点滅する場合は、電源障害が発生しています。詳しくは、フロントパネルLEDの電源障害コー

<u>
</u>
<u>
</u>
<u>
</u> *上*を参照してください。

- 2 電源が供給されていない、電源コードが接続されていない、電源装置が搭載されていない、電源装置が故障している、またはフロントI/0のケーブルが外れています。
- 3 ヘルスLEDが劣化状態またはクリティカル状態を示している場合は、システムのインテグレーテッドマネジメントログ (IML)を確認するか、またはHPE iLOを使用してシステムヘルスステータスを確認してください。

リアパネルのコンポーネント

番号	説明
1	M-CRPS ¹ 8
2	M-CRPS 1 6
3	スロット1 PCIe5 x16
4	スロット2 PCIe5 x16
5	スロット3 PCIe5 x16
6	スロット4 PCIe5 x16
7	スロット5 PCIe5 x16
8	スロット6 PCIe5 x16
9	M-CRPS 1 7
10	M-CRPS $\frac{1}{5}$
11	M-CRPS $\frac{1}{3}$
12	M-CRPS 1 1
13	ixポート ² (オプション)
14	スロット28 OCP B PCIe5 x8/x16 ³
15	スロット27 OCP A PCIe5 x8/x16 ³
16	iL0専用ネットワークポート 4
17	USB 3.2 Gen 1ポート <u>4</u>
18	VGAポート <u>4</u>
19	M-CRPS 1 4
20	M-CRPS ¹ 2

- モジュラーハードウェアシステム共通冗長電源装置
- <u>1</u> ixポートは外部シリアルポートドングルに接続します。 <u>2</u>
- これらのOCPスロットにはOCP帯域幅有効化ケーブルオプションが必要です。 <u>3</u>
- これらのコンポーネントはDC-SCMオプション上にあります。 4

リアパネルのLED

番号	LED	ステータス	定義
1	電源装置	緑色で点灯	電源装置は正常に動作しています。
		緑色で点滅	 毎秒1回点滅 - 電源装置がスタンバイモードに入っています
			 毎秒2回点滅 - 電源装置のファームウェアがアップデート 中です
		オレンジ色で点灯	以下の1つ以上の条件が発生
			 ・ 電源装置で障害が発生している
			 ・ 電源装置のエラー
		消灯	以下に示す1つ以上の状態が発生しています。
			• 電源が供給されていない
			 電源コードが外れている。
2	UID ¹	青色で点灯	アクティブ化済み
		青色で点滅	 毎秒1回点滅 - リモート管理またはファームウェアアップ グレードを実行中です
			 毎秒4回点滅 - iL0の手動再起動シーケンスが開始されました
			• 毎秒8回点滅 - iLOの手動再起動シーケンスが進行中です
		消灯	非アクティブ化済み
3	iLOステータス 1	緑色で点灯	ネットワークに接続しています
		緑色で点滅	ネットワークは動作中です
		消灯	ネットワークが動作していません
4	iL0リンク ¹	緑色で点灯	ネットワークにリンクされています
		消灯	ネットワークにリンクされていません

1 これらのコンポーネントはDC-SCMオプション上にあります。

コンポーネントのタッチポイント

特定のコンポーネントは色分けされています。これらの色は、取り外しプロセスで触れることが推奨される部分を表し、コ ンポーネントを取り外す前にシステムのシャットダウンが必要かどうかを示します。

以下の図に参考例を示します。

HPEホットプラグレッド

ホットプラグレッドは、ホットプラグ対応のコンポーネントを示します。これらのコンポーネントは、システムの実行中に 取り外したり取り付けたりすることができ、そうしてもシステムがシャットダウンすることはありません。

コンポーネントの例:

- 冗長電源構成の電源装置
- ホットプラグ対応ファン
- ホットプラグ対応ドライブ
- ホットプラグ対応ブートデバイス内のM.2 SSD

HPEタッチポイントブルー

タッチポイントブルーは、コールドプラグ対応のコンポーネントを示します。これらのコンポーネントではシステムの シャットダウンが必要です。これを怠ると、システム障害やデータ損失が発生する可能性があります。コールドプラグ対応 のコンポーネントは、非電気コンポーネントのタッチポイントを示す場合もあります。

コンポーネントの例:

- ストレージデバイス
- ファンケージ
- システムボード
- Energy Pack

内部コンポーネント

番号	説明
1	GPUケージ
2	ファンケージ
3	PDB 1
4	側波帯ボード
5	セカンダリライザーケー ジ
6	プライマリライザーケー ジ
7	PDB 2
8	システムボード
9	DIMM

システムボードのコンポーネント

システムボードの画像でグレー表示されているコンポーネントは、このサーバーでは使用できません。 矢印は、サーバーの前面方向を示します。

番号	説明
1	ストレージのバックアップ電源コネクター1
2	M-XIOポート ¹
3	UPIコネクター ²
4	NS204i-u信号コネクター
5	USB 3.2 Gen 1ポート
6	シャーシ侵入検知スイッチコネクター
7	M-PIC電源コネクター1
8	M-PIC電源コネクター2
9	M-XIOポート12
10	NS204i-u電源コネクター
11	UPIコネクター1
12	UPIコネクター2
13	M-XIO OCPポートB
14	PCIe5 x16ライザーコネクター2
15	M-XIO OCPポートA-1
16	M-XIOポート17
17	PCIe5 x16ライザーコネクター3
18	M-XIO OCPポートA-2
19	システムバッテリ
20	PCIe5 x16ライザーコネクター4
21	M-XIOポート13
22	フロント1/0コネクター
23	側波帯信号コネクター1
24	側波帯信号コネクター2
25	PCIe5 x16ライザーコネクター6
26	M-PIC電源コネクター3
27	M-PIC電源コネクター4
28	UPIコネクター8
29	UPIコネクター7
30	ストレージのバックアップ電源コネクター2
31	ファンコネクター1~8(上から下)
32	ボックス3:ドライブバックプレーン電源コネクター
33	システムメンテナンススイッチ
34	Energy Packコネクター
35	M-PIC電源コネクター5
36	ボックス2および4:ドライブバックプレーン電源コネク ター
37	ボックス1:ドライブバックプレーン電源コネクター
38	フロントファンケージ/液冷コネクター

<u>1</u>

M-XIOポートは上から下に4、6、2、0、5、7、3、1と番号が付けられています。 Intel UPIコネクターは上から下に5、6、3、4、11、12、9、10と番号が付けられています。 <u>2</u>

サブトピック

システムメンテナンススイッチの説明

位置	デフォル	デフォルト機能	
\$1 ¹	オフ	 オフ - iL0セキュリティは有効です。 オン - iL0セキュリティは無効です。 	
S2	オフ	予約済み	
S3	オフ	予約済み	
S4	オフ	予約済み	
S5 <u>1</u>	オフ	 オフ - 電源投入時パスワードは有効です。 オン - 電源投入時パスワードは無効です。 	
S6 <u>1</u> , <u>2</u> , <u>3</u>	オフ	 オフ - 動作していません オン - 製造時のデフォルト設定を復元します 	
\$7	オフ	予約済み	
S8	オフ	予約済み	
S9	オフ	予約済み	
S10	オフ	予約済み	
S11	オフ	予約済み	
S12	オフ	予約済み	

- 1 冗長ROMにアクセスするには、S1、S5、およびS6をオンに設定します。
- 2 システムメンテナンススイッチのS6をオンの位置に設定すると、すべての構成設定を製造時のデフォルト設定に復元 できるようになります。
- 3 システムメンテナンススイッチのS6をオンの位置に設定してセキュアブートを有効にすると、一部の構成は復元できません。詳しくは、<u>サーバーの構成</u>を参照してください。

DIMMラベルの識別

DIMMの特長を確認するには、DIMMに貼り付けられているラベルを参照してください。このセクションの情報は、ラベルを使用してDIMMの仕様情報を見つけるのに役立ちます。

製品の特長、仕様、オプション、構成、および互換性について詳しくは、HPE DDR5 SmartメモリのQuickSpecsを参照してく ださい。

https://www.hpe.com/docs/server-memory

	1 2 3 4 5 6 7 32GB 1Rx8 DDR5-6400B-R	
> > -		0

番号	説明	例
1	容量*	16 GB
		32 GB
		64 GB
		96 GB
		128 GB
		256 GB
2	ランク	1R - シングルランク
		2R - デュアルランク
		4R - クアッドランク
3	DRAM上のデータ幅	x4 - 4ビット
		x8 - 8ビット
4	メモリ世代	PC5 – DDR5
5	メモリの最大速度*	6400 MT/s
6	CASレイテンシ	B - 42-42-42
7	DIMMタイプ	R - RDIMM(レジスター付 き)

*メモリの最大速度および容量は、メモリの種類、メモリ構成、およびプロセッサーモデルの総合的な組み合わせによって 決まります。

DIMMスロットの番号

矢印は、サーバーの正面側を指しています。

データセンターセキュアコントロールモジュールのコンポーネント

このサーバーは、データセンターモジュラーハードウェアシステム (DC-MHS) ベースの製品です。

- システムボード上のプロセッサーとDIMMがコンピュート機能を提供します。システムボードはホストプロセッサーモジュール(HPM)として機能します。
- データセンターセキュアコントロールモジュール (DC-SCM) に組み込まれているiLOとTrusted Platform Module 2.0 (TPM 2.0) チップセットが、このサーバーの管理機能とセキュリティ機能を提供します。このモジュールには、シリア ルポートオプション用のコネクターもあります。

SKU番号に応じて、このサーバーは特定の<u>HPMおよびDC-SCMバージョン</u>をサポートします。

ライザーボードのコンポーネント

このサーバーでは、次の2種類の一般的なPCIeライザーがサポートされています。

- 1スロットPCIe x16ベースライザー このライザーは、システムボードのライザーコネクターに直接取り付けられる ボードのみのライザーです。このライザータイプは、ライザーケージ内のベースライザーとして、プライマリライザー スロット3およびセカンダリライザースロット6に使用されます。
- 2スロットPCIe x16キャプティブライザー このライザータイプには、PCIeスロットを接続する信号ケーブルオプションがあります。各ライザーが最大2つのスロットをサポートします。

PCIe x16キャプティブライザーは、異なる場所に取り付けられます。

- 。 GPUケージ
- 。 ライザーケージ

1スロットPCIe x16ベースライザーコンポーネント

どちらのスロットもPCIe 5 x16 (16、8、4、2) であり、フルハイト、ハーフレングス、またはハーフハイト、ハーフレン グス (ロープロファイル)の拡張カードをサポートします。

2スロットPCIe x16キャプティブライザー

番号	説明	サポートされるフォームファクター
1	PCIeスロット側波帯信号コネクター	-
2	PCIe5 x16 (16, 8, 4, 2)	 GPUケージ内:ダブル幅、フルハイト、フルレ ングス
		 ライザーケージ上:
		 フルハイト、ハーフレングス ハーフハイト、ハーフレングス(ロープロファイル)
3	キャプティブライザー電源コネクター	-
4	GPU側波帯コネクター	_

4スロットPCIe x16スイッチボードのコンポーネント

4スロットPCIe x16スイッチボードはGPUケージに取り付けられます。

留丂	武明
1	PCIe5 x16 (16、8、4、1) スロット
2	PCIeスイッチボードカスケード信号コネク ター
3	アップストリームセカンダリMCIO
4	PCIeスイッチボード電源コネクター
5	アップストリームプライマリMCIO
6	PCIeスイッチボード側波帯信号コネクター

GPUライザースロットの番号

サブトピック

<u>シングル幅GPUライザースロットの番号</u> ダブル幅GPUライザースロットの番号

シングル幅GPUライザースロットの番号

すべてのライザースロットはPCIe5 x16(16、8、4、2)であり、最大消費電力はそれぞれ75 Wです。

8シングル幅GPU構成

この構成の内容は以下のとおりです。

- GPUケージには2つの4スロットのPCIe x16スイッチボードがあります。各スイッチボードは4つのGPUをサポートします。
- GPUはスロット13~20に配置されます。

16シングル幅GPU構成

この構成の内容は以下のとおりです。

- GPUケージには4スロットPCIe x16スイッチボードが4つあります。各スイッチボードは4つのGPUをサポートします。
- GPUはスロット9~24に配置されます。

ダブル幅GPUライザースロットの番号

すべてのライザースロットはPCIe5 x16(16、8、4、2)であり、最大消費電力はそれぞれ75 Wです。

2ダブル幅GPU構成

この構成の内容は以下のとおりです。

- GPUケージには2つのPCIe x16キャプティブライザーがあります。各キャプティブライザーは1つのGPUをサポートしま す。
- GPUはスロット15と17に配置されます。

4ダブル幅GPU構成

この構成の内容は以下のとおりです。

- GPUケージには4つのPCIe x16キャプティブライザーがあります。各キャプティブライザーは1つのGPUをサポートします。
- GPUはスロット13、15、17、19に配置されます。

8ダブル幅GPU構成

この構成の内容は以下のとおりです。

- GPUケージには4スロットPCIe x16スイッチボードが4つあります。各スイッチボードは2つのGPUをサポートします。
- GPUはスロット9、11、13、15、17、19、21、23に配置されます。

8ダブル幅GPUおよびPCIe拡張カード構成

この構成の内容は以下のとおりです。

- GPUケージには、4つの4スロットPCIe x16スイッチボードと、2つのPCIe x16キャプティブライザーがあります。
- 各スイッチボードは2つのGPUをサポートします。GPUはスロット9、11、13、15、17、19、21、23に配置されます。
- キャプティブライザーのスロット7、8、25、26は、PCIe拡張カードの取り付けをサポートします。

PCIeライザースロットの番号

スロット番号	位置	説明	サポートされるフォームファクター
1	プライマリライザーケージ	2スロットPCIe x16	• フルハイト ハーフレンガス
2		キャノティノフィザー	
3	_	1スロットPCIe x16 ベースライザー	・ ハーフハイト、ハーフレングス(ロープ ロファイル)
4	セカンダリライザーケージ	2スロットPCIe x16	_
5	_	キャプティフライザー	-
6	_	1スロットPCIe x16 ベースライザー	_

側波帯ボードのコンポーネント

側波帯ボード上のすべてのコネクターは側波帯信号コネクターです。

番号	シルクスクリーンマー カー
1	CB3 SB
2	CB2 SB
3	CB1 SB
4	HPM SB1
5	HPM SB2

OCPリタイマーカードのコンポーネント

番号説明

- 1 LP SlimSASポート1
- 2 LP SlimSASポート2¹
- 1 このサーバーでは未使用。

HPEのベーシックドライブのLEDの定義

HPEのベーシックドライブキャリアには、次のLEDがあります。

- オレンジ色/青色のLED ストレージコントローラーと連動するドライブバックプレーンによって管理され、ドライブの ステータスを示すために使用されます。
- 緑色のLED ドライブ自体によって管理され、ドライブ動作中を示します。

SFF (2.5型) ベーシックドライブキャリア

SFF (2.5型) ベーシックドライブキャリアはホットプラグU.3 PCIe4 NVMeドライブをサポートしています。

番号	LED	状態	定義
1	障害/位置確認	オレンジ色で点灯	このドライブが故障したか、サポートされていないか、無 効です。
		青色で点灯	ドライブは正常に動作しており、管理アプリケーションに よって識別されています。
		オレンジ色/青色で点滅 (毎秒1回点滅)	ドライブに障害が発生したか、このドライブの障害予測ア ラートが受信されました。また、このドライブが管理アプ リケーションによって識別されました。
		オレンジ色で点滅(毎秒 1回点滅)	このドライブの障害予測アラートを受信しています。でき るだけ早くドライブを交換してください。
		消灯	ドライブは正常に動作しており、管理アプリケーションに よって識別されていません。
2	オンライン/動作	緑色で点灯	ドライブはオンラインで、アクティブです。
		緑色で点滅(毎秒1回点 滅)	ドライブの動作として以下のいずれかを示します。
			 RAIDの再構築または実行
			• ストリップサイズの移行の実行
			 容量拡張の実行
			• 論理ドライブの拡張の実行
			• 消去
			● スペア部品のアクティブ化操作
		緑色で点滅(毎秒4回点 滅)	ドライブは正常に動作しており、アクティブです。
		消灯	ドライブで、RAIDコントローラーによる構成が行われてい ないか、またはスペアドライブです。

EDSFF SSDのLEDの定義

EDSFFドライブキャリアには、次の2つのLEDがあります。

- オレンジ色/青色のLED ストレージコントローラーと連動するドライブバックプレーンによって管理され、ドライブの ステータスを示すために使用されます。
- 緑色のLED ドライブ自体によって管理され、ドライブ動作中を示します。

番号	LED	状態	定義
1	障害/位置確認	オレンジ色で点灯	このドライブが故障したか、サポートされていないか、無効 です。
		青色で点灯	ドライブは正常に動作しており、管理アプリケーションに よって識別されています。
		オレンジ色/青色で点 滅(毎秒1回点滅)	ドライブに障害が発生したか、このドライブの障害予測ア ラートが受信されました。また、ドライブは管理アプリケー ションによって識別されています。
		オレンジ色で点滅 (毎秒1回点滅)	このドライブの障害予測アラートが受信されました。できる だけ早くドライブを交換してください。
		消灯	ドライブは正常に動作しており、管理アプリケーションに よって識別されていません。
2	オンライン/動作	緑色で点灯	ドライブはオンラインで、アクティブです。
		緑色で点滅(毎秒4回 点滅)	ドライブは正常に動作しており、アクティビティがありま す。
		消灯	電源が供給されていません。

ドライブベイの番号

注意 ドライブが取り付けられていない状態でサーバーを購入した場合、一部のドライブベイが空で、他のドライブベイにドライブブランクが装着されている場合があります。システムの適切な冷却を維持するため、ドライブまたはドライブブランクが取り付けられていない状態でサーバーを動作させないでください。

サブトピック

<u>SFF(2.5型)ドライブベイの番号</u> <u>E3.Sドライブベイの番号</u>

SFF (2.5型) ドライブベイの番号

SFF (2.5型) ホットプラグ対応ドライブボックスは、2 SFF (2.5型) 24G x4 U.3 NVMe / SAS UBM10 BCドライブバックプ レーンを使用します。

ドライブバックプレーンの説明について詳しくは、ドライブバックプレーンの命名を参照してください。

4 SFF (2.5型) ドライブベイの番号

8 SFF (2.5型) ドライブベイの番号

E3.Sドライブベイの番号

E3.Sホットプラグ対応ドライブボックスは、4 E3.S 32G x4 NVMe UBM10 ECドライブバックプレーンを使用します。 ドライブバックプレーンの説明について詳しくは、<u>ドライブバックプレーンの命名</u>を参照してください。

4 E3.Sドライブベイの番号

8 E3.Sドライブベイの番号

16 E3.Sドライブベイの番号

ドライブバックプレーンの命名

このトピックでは、ドライブバックプレーンの命名で示されている機能について説明します。この命名規則は、HPE Gen11サーバーリリースから採用されています。サーバーは、このトピックに記載されているすべての機能をサポートして いるとは限りません。サーバー固有のサポート情報については、サーバーのガイドを参照してください。

- ドライブバックプレーンのサポートについては、<u>ドライブベイの番号</u>を参照してください。
- ドライブバックプレーンのケーブル接続については、<u>ストレージのケーブル接続</u>を参照してください。

番号	説明	值
1	ドライブベイの数	バックプレーンでサポートされているドライブベイの数。
2	ドライブのフォームファクター	LFF(3.5型)- ラージフォームファクター
		SFF(2.5型)- スモールフォームファクター
		E3.S - Enterprise and Datacenter Standard Form Factor (EDSFF E3.S)
3	レーンあたりの最大リンク速度(GT/s)	12G
		16G
		24G
		32G
4	ポートリンク幅とインターフェイス	x1 NVMe/SAS – U.3 NVMe、SAS、またはSATA 1
		x4 NVMe/SAS – U.3 NVMe、SAS、またはSATA ²
		x4 NVMe - U. 2 NVMe $\frac{3}{2}$
		x4 NVMe - E3.S
5	Universal Backplane Manager (UBM) モデル	UBMモデルは、バックプレーンで使用されるUBMファームウェ アを定義します。
		UBMモデルの例:UBM2、UBM3など
6	ドライブキャリアのタイプ	BC - ベーシックキャリア (SFF (2.5型))
		LP - ロープロファイルキャリア (LFF (3.5型))
		EC - E3. Sキャリア

x1 U.3 NVMe、SAS、およびSATAドライブに対するトライモードコントローラーのサポート。システムボード接続は、 <u>1</u>

SATAドライブのみをサポートします (Gen12では利用できません)。 x4 U.3 NVMe、x2 (スプリッターケーブル経由) U.3 NVMe、またはx1 SASおよびSATAドライブに対するCPU直接接続ま 2 たはトライモードコントローラーのサポート。

x4 U.2 NVMeドライブに対するCPU直接接続またはトライモードコントローラーのサポート。 3

PDBのコンポーネント

番号	説明
1	PDB信号コネクター
2	スイッチボード用M-PIC電源コネクター
3	GPU用M-PIC電源コネクター

電源装置の番号

サーバーは、複数のパワードメインが割り当てられた5つ(ベイ1、2、3、5、および7)または8つ(ベイ1~8)のモジュ ラーハードウェアシステム共通冗長電源装置(M-CRPS)をサポートします。

番号	ドメインの説明	電波	源装置の番号	
1	GPUドメイン2(オプション)	•	M-CRPS 4	
		•	M-CRPS 6	
		٠	M-CRPS 8	
2	GPUドメイン1	•	M-CRPS 3	
		•	M-CRPS 5	
		٠	M-CRPS 7	
3	システムドメイン	•	M-CRPS 1	
		٠	M-CRPS 2	

ファン番号

システムに十分なエアフローが確保されるように、サーバーにはデフォルトで4個のファンモジュールが取り付けられてい ます。ファンモジュールは、90 Wパフォーマンスシステムファンモジュール(P74095-B21)または110 W最大システムファ ンモジュール(P80098-B21)のいずれかを使用できます。混在したファンモジュール構成はサポートされていません。

各ファンモジュールには、92 x 56 mmデュアルローターファンが1つと、40 x 28 mmシングルローターファンが2つあります。

矢印は、サーバーの正面側を指しています。

番号説明

1	ファンモジュール1
2	ファンモジュール2
3	ファンモジュール3
4	ファンモジュール4

サブトピック

<u>ファンモードの動作</u>

ファンモードの動作

16個のローターを含むデフォルトの4つのファンモジュールが、冗長ファンのサポートを提供します。冗長ファンモードでファンローターに障害が発生した場合には、次のようになります:

- システムは非冗長ファンモードに切り替わります。システムは、このモードで動作します。
- システムヘルスLEDがオレンジ色に点滅します。

2番目のファンローターに障害が発生した場合、オペレーティングシステムは正常にシャットダウンします。

HPE NS204i-uブートデバイスV2のコンポーネント

番号	説明
1	ブートデバイスケージ
2	M.2スロット
3	ブートデバイスキャリ ア

HPE NS204i-uブートデバイスV2のLEDの定義

🖉 注記

ベイ番号はSSDキャリアハンドルに記載されています。

番号	LED	ステータス	定義
A	障害または位置 確認	オレンジ色で点灯	ドライブが故障したか、サポートされていないか、無効です。
		青色で点灯	ドライブは正常に動作しています。
		オレンジ色または青色 で点滅(1秒に1回点滅)	ドライブに障害が発生したか、ドライブの障害予測アラートが受信 されました。
		オレンジ色で点滅(毎 秒1回点滅)	ドライブの障害予測アラートが受信されました。できるだけ早くド ライブを交換してください。
		消灯	ドライブは正常に動作しており、アプリケーションによって識別さ れていません。
В	オンライン/動作	緑色で点灯	ドライブはオンラインで、アクティビティはありません。
		緑色で点滅(毎秒1回点 滅)	ドライブは以下のいずれかを実行中です。
			 RAIDの再構築または実行
			• 消去
		緑色で点滅(毎秒4回点 滅)	ドライブは正常に動作しており、アクティブです。
		消灯	ドライブでは、RAIDコントローラーによる構成は行われていませ ん。

ヒートシンクおよびプロセッサーソケットのコンポーネント

標準的なヒートシンクを示します。ご使用のヒートシンクは違って見える場合があります。

番号	説明
1	プロセッサーヒートシンクモジュー ル*
2	傾き防止ワイヤー
3	プロセッサーキャリアのリリースタブ
4	ボルスタープレートのガイドポスト
5	ボルスタープレート
6	ヒートシンクのネジ

*このモジュールは、キャリアに固定済みのプロセッサーに接続されたヒートシンクで構成されています。

セットアップ

この章では、サーバーの初期セットアップ手順のほか、一般的な操作要件と安全上の注意事項についても説明します。

サブトピック

<u>HPEインストレーションサービス サーバーのセットアップ</u> 動作要件 ラックに関する警告と注意事項 サーバーに関する警告と注意事項 静電気対策

HPEインストレーションサービス

HPEインストレーションサービスでは、Hewlett Packard Enterprise製品、ソフトウェア製品、HPEまたはHPE製品販売店に よって販売される他のベンダーのHPEサポート対象製品の基本的な設置、インストールを提供しています。インストレー ションサービスは、HPEおよびHPEサポート対象製品を安心してお使いいただけるように設計されたHPEスペシャリストによ るHPE導入サービスです。

HPEインストレーションサービスには以下の利点があります。

- HPE認定テクニカルスペシャリストによるインストール。
- 製品仕様に基づき確実かつ迅速なインストール。
- サービス実施のスケジュール調整。
- お客様は本来の業務に集中することが可能。
- HPE認定テクニカルスペシャリストによるインストールが必要な製品について、保証期間内は完全補償。

HPEインストレーションサービスのサービス仕様およびお取引条件は下記Webサイトを参照してください:

https://www.hpe.com/jp/supportservices-tc

サーバーのセットアップ

前提条件

- ベストプラクティスとして、Hewlett Packard Enterpriseでは、初めてサーバーを使用する前に、最新のファームウェア、ドライバー、およびシステムソフトウェアをインストールすることをお勧めします。以下のオプションがあります。
 - HPE Compute Ops Managementは、統合された単一のブラウザーベースのインターフェイスを介して、エッジからクラウドまでの運用を安全に合理化し、主要なライフサイクルタスクを自動化する、先進的なSoftware-as-a-Serviceプラットフォームです。HPE Compute Ops Managementの使用について詳しくは、<u>https://www.hpe.com/info/com-docs</u>を参照してください。
 - Intelligent Provisioningのファームウェアアップデートオプションを使用します。Intelligent Provisioningは、HPE ProLiantサーバーに組み込まれているサーバー展開ツールです。Intelligent Provisioningにアクセスするには、サーバーのブートプロセス中にF10キーを押します。詳しくは、Intelligent Provisioningのユーザーガイド(https://www.hpe.com/support/hpeintelligentprovisioning-quicklinks)を参照

してください。

- Service Pack for ProLiantをダウンロードします。SPPは、単一のISOイメージとして提供される統合されたシステムソフトウェアおよびファームウェアアップデートソリューションです。このソリューションは、Smart Update Managerを展開ツールとして使用します。
 - ・ 推奨されるSPPのダウンロード方法は、<u>https://www.hpe.com/servers/spp/custom</u>でSPPカスタムダウンロードを
 作成することです。

このオプションでは、不要なOSおよびサーバーモデルのファームウェアとドライバーを除外することによって、SPPのサイズを縮小できます。

- SPPは、<u>https://www.hpe.com/servers/spp/download</u>にあるSPPダウンロードページからもダウンロードすることができます。
- ご使用のOSまたは仮想化ソフトウェアがサポートされていることを確認します。 <u>https://www.hpe.com/support/Servers-Certification-Watrices</u>
- このサーバーは、タイプoおよびタイプpストレージコントローラーオプションをサポートします。ストレージ構成に はIntel Virtual RAID on CPU (Intel VROC)を使用してください。Intel VROCを使用する予定の場合は、<u>サーバーを</u> セットアップする前に、この重要な情報を確認してください。
- サーバーの<u>動作要件</u>を確認します。
- 安全性とコンプライアンス情報を確認します。
 <u>https://www.hpe.com/support/safety-compliance-enterpriseproducts</u>

手順

- 1. サーバーの箱を開けて内容を確認してください。
 - サーバー
 - 電源コード
 - ラックマウント用ハードウェア部品(オプション)
 - ドキュメント

サーバーには、OSメディアは同梱されません。すべてのシステムソフトウェアとファームウェアは、あらかじめサー バーにプリロードされています。

- 2. (オプション)<u>ハードウェアオプションを取り付けます</u>。
- 3. <u>サーバーをラックに取り付けます。</u>
- 4. サーバーの管理方法を決定します。
 - ローカル管理の場合: KVMスイッチを使用するか、キーボード、モニター、およびマウスを接続します。
 - リモート管理の場合:iLO Webインターフェイスに接続し、リモートコンソールを実行します。
 - a. 次のことを確認します。
 - iLOに、リモートコンソール機能を使用するライセンスが付与されている。
 iLOのライセンスがない場合は、HPEのWebサイトを参照してください。

https://www.hpe.com/jp/servers/ilo

- iL0管理ポートが、安全なネットワークに接続されている。
- b. ブラウザーを使用して、iLOのWebインターフェイスに移動し、ログインします。

https://<iLOホスト名またはIPアドレス>

以下の点に注意してください。

◦ DHCPサーバーがIPアドレスを割り当てる場合、IPアドレスはブート画面に表示されます。

。 静的IPアドレスが割り当てられている場合は、そのIPアドレスを使用します。

- c. iLOログイン名とパスワードを入力して、ログインをクリックします。
- d. ナビゲーションツリーで、リモートコンソール&メディアリンクをクリックしてから、リモートコンソールを起動 します。
- 5. 電源ボタンを押します。

リモートで管理する場合は、iLOの仮想電源ボタンを使用します。

- 6. <u>サーバーの初期セットアップを構成します</u>。
- 7. <u>ストレージをセットアップします</u>。
- 8. <u>OSまたは仮想化ソフトウェアを展開します</u>。
- 9. OSのインストール後、<u>ドライバーをアップデートします</u>。
- 10. <u>サーバーを登録します</u>。

動作要件

取り付けの準備と計画を行う際には、次の動作要件を必ず守ってください。

- <u>空間および通気要件</u>
- <u>温度要件</u>
- <u>電源要件</u>
- <u>アース要件</u>

環境要件については、<u>環境仕様</u>を参照してください。

サブトピック

<u>空間および通気要件</u> <u>温度要件</u> <u>電源要件</u> <u>アース要件</u>

空間および通気要件

サーバーを屋内の商用ラックに設置する際には、修理をしやすくし、また通気をよくするために、次の空間および通気要件 に従ってください。

- ラックの前面に63.50 cm (25.00インチ)
- ラックの背面に76.20 cm (30.00インチ)
- ラックの背面から別のラックまたはラック列の背面の間に121.90cm (48.00インチ)

次の注意事項に従ってください。

 サーバーは、冷気をラックの前面から吸収して、内部の熱気を背面から排出します。ラックの前面ドアと背面ドアは、 周囲の空気がキャビネット内に入るように適切に換気されている必要があります。キャビネットから内部の熱気を逃が すために、背面ドアは十分に換気されている必要があります。 注意

不十分な冷却や装置の損傷を防止するため、通気用開口部は塞がないようにしてください。

注意

ラック内の縦方向のスペースにサーバーやラックコンポーネントが設置されていない場 合、コンポーネント間の隙間が原因でラック全体およびサーバー周辺の空気の流れが変動 することがあります。適切な通気を維持するために、コンポーネントを取り付けない棚 は、すべてブランクパネルでカバーしてください。ブランクパネルなしでラックを使用す ると、冷却が不適切になり、高温による損傷が発生する可能性があります。

- 他社製ラックを使用する場合、適切な通気を確保し装置の損傷を防ぐため、以下の追加要件に従ってください。
 - 正面および背面ドア-42Uラックに正面および背面ドアがある場合、ラックの上部から下部にかけて5,350平方cm (830平方インチ)の通気孔(通気に必要な64パーセントの開口部と同等)を均等に確保し、十分な通気が行われる ようにします。
 - 側面 取り付けたラックコンポーネントとラックのサイドパネルの間は、7.00 cm (2.75インチ)以上空けてください。

温度要件

装置が安全で正常に動作するように、通気がよく温度管理の行き届いた場所にシステムを取り付けまたは配置してください。

ほとんどのサーバー製品で推奨している最大周囲動作温度(TMRA)は、35°C(95°F)です。ラックを設置する室内の温度は、35°C(95°F)を超えてはなりません。

🔨 注意

他社製オプションをインストールする場合に装置の損傷を防止するために、次の点に注意し てください。

- オプションの装置によって、サーバー周囲の通気が妨げられたり、内部のラック温度が 許容される上限を超えて上昇したりすることがないようにしてください。
- 製造元のTMRAを超えないでください。

電源要件

この装置は、資格のある電気技師が情報技術機器の取り付けについて規定したご使用の地域の電気規格に従って取り付けし なければなりません。この装置は、NFPA 70, 1999 Edition(全国的な電気規約)およびNFPA-75, 1992(電気コンピュー ター/データ処理装置の保護に関する規約)の適用対象となる取り付けで動作するよう設計されています。オプションの電 源の定格については、製品の定格ラベルまたはそのオプションに付属のユーザードキュメントを参照してください。

警告 けが、火災、または装置の損傷を防止するために、ラックに電源を供給するAC電源分岐回路 の定格負荷を超えないようにしてください。施設の配線および取り付け要件については管轄 する電力会社にお問い合わせください。

サーバーを不安定な電源および一時的な停電から保護するために、UPS(無停電電源装置) を使用してください。UPSは、電源サージや電圧スパイクによって発生する損傷からハード ウェアを保護し、停電中でもシステムが動作を継続できるようにします。

アース要件

適切な動作および安全のために、このサーバーは正しくアースされている必要があります。米国では、必ず地域の建築基準 だけでなく、NFPA 70、National Electric Code第250項に従って装置を設置してください。カナダでは、Canadian Standards Association, CSA C22.1, Canadian Electrical Codeに従って装置を取り付ける必要があります。その他のすべ ての国では、International Electrotechnical Commission (IEC) Code 364の第1部から第7部など、地域または全国的な電 気配線規約に従って装置を取り付ける必要があります。さらに、取り付けに使用される分岐線、コンセントなどの配電装置 はすべて、指定または認可されたアース付き装置でなければなりません。

同じ電源に接続された複数のサーバーから発生する高圧漏れ電流を防止するために、Hewlett Packard Enterpriseでは、建物の分岐回路に固定的に接続されているか、工業用プラグに接続される着脱不能コードを装備した、PDUを使用することをお勧めします。NEMAロック式プラグまたはIEC 60309に準拠するプラグは、この目的に適しています。サーバーに一般的な 電源延長コードを使用することは推奨されません。

ラックに関する警告と注意事項

警告 すべてのコンポーネントが取り外されると、サーバーの重量は37.51 kg(82.70ポンド)に なります。すべてのコンポーネントを取り付けると、サーバーの重量は最大で60.24 kg(132.80ポンド)になります。 ラックソリューションを構成する前に、必ず、ラックメーカーの重量制限と仕様を確認して ください。これに従わないと、けがをしたり、装置や施設の損傷が発生する可能性がありま す。

警告

サーバーはかなりの重量があります。けがや装置の損傷を防止するために、次の点に注意し てください。

- 手動での装置の取り扱いに関する、地域の労働衛生および安全に関する要件およびガイ ドラインに従ってください。
- サーバーの取り付けおよび取り外し作業中には、特に本体がレールに取り付けられていない場合、必ず適切な人数で製品を持ち上げたり固定したりする作業を行ってください。サーバーの重量は37.51 kg(82.70ポンド)を超えているため、サーバーを持ち上げてラックに取り付ける際は、必ず2人以上で作業を行ってください。サーバーを胸より高く持ち上げるときは、サーバーの位置を合わせるためにさらに人数が必要になる場合があります。
- サーバーをラックへ取り付ける、またはサーバーをラックから取り外す際には、サーバーがレールに固定されていないと、不安定になるので注意してください。
- コンポーネントをラックの外部に引き出す前に、ラックを安定させてください。また、 コンポーネントは1つずつ引き出してください。一度に複数のコンポーネントを引き出す と、ラックが不安定になる場合があります。
- レールマウントされたコンポーネントの上に物を積み重ねたり、ラックから引き出した ときに作業台として使用したりしないでください。

警告

けがや装置の損傷を防止するために、次の点に注意してください。

- ラックには適切な転倒防止措置が施されています。この措置には、ラックの製造元や該 当する規約によって規定されている、ボルトによる床への固定、転倒防止脚、安定器、 またはそれらの組み合わせがあります。
- 水平ジャック(脚)は床まで延びています。
- ラックの全重量が水平ジャック(脚)にかかっています。
- 1つのラックだけを設置する場合は、ラックに固定脚を取り付けてください。
- 複数ラックの取り付けではラックを連結してください。

警告

けがや装置の損傷を防止するために、ラックを降ろすときには、次の点に注意してください。

- 荷台からラックを降ろす際は、2人以上で作業を行ってください。42Uラックは何も載せていない場合でも重量が115 kgで、高さは2.1 mを超えることがあるため、キャスターを使って移動させるときに不安定になる可能性があります。
- ラックを傾斜路に沿って移動する際は、ラックの正面に立たないで、必ず、両側から支 えてください。

注意

最も重いアイテムがラックの最下部になるように、常にラックの取り付けを計画してください。 最も重いアイテムを最初に取り付け、下から上へとラックへの搭載を続けてください。

注意

ラックにサーバーを取り付ける前に、ラックの制限事項の範囲を適切に定めてください。また、取り付けを続行する前に、以下の点を考慮してください。

- サーバーの静止時と変化時の積載能力を完全に理解し、ラックの重量に対応できること を確認する必要があります。
- サーバーのケーブル配線、取り付けと取り外し、およびラックドアの作動のための十分 な隙間が存在することを確認します。

サーバーに関する警告と注意事項

 警告 けが、感電、または装置の損傷を防止するために、電源コードを抜き取って、サーバーに電 源が供給されないようにしてください。電源ボタンを押してもシステムの電源を完全に切る ことはできません。AC電源コードを抜き取るまで、電源装置の一部といくつかの内部回路は アクティブのままです。

警告

表面が熱くなっているため、やけどをしないように、ドライブやシステムの内部部品が十分 に冷めてから手を触れてください。

警告

Energy Packを取り外した後に、火災や火傷のリスクを低減するために:

- Energy Packを分解したり、つぶしたり、穴を空けたりしないでください。
- 外部接点をショートさせないでください。
- Energy Packを火や水の中に投じないでください。
- 爆発または可燃性の液体やガスの漏れにつながる可能性があるため、Energy Packを低い 空気圧にさらさないでください。
- Energy Packを60°C以上の高温にさらさないでください。

電源が切断された後でも、バッテリ電圧が1秒から160秒間は残る可能性があります。

注意

サーバーを不安定な電源および一時的な停電から保護するために、UPSを使用してくださ い。UPSは、電源サージや電圧スパイクによって発生する損傷からハードウェアを保護し、 停電中でもサーバーが動作を継続できるようにします。

注意

電子部品の損傷を防止するために、正しくアースを行ってから取り付け、取り外し、または 交換手順を開始してください。正しくアースを行わないと<u>静電気放電</u>を引き起こす可能性が あります。

注意

データ損失を防ぐために、Hewlett Packard Enterpriseではハードウェアオプションの取り 付けまたは取り外しを行う前、またはサーバーメンテナンスやトラブルシューティング手順 を実行する前に、サーバーのすべてのデータをバックアップすることをお勧めします。

注意

アクセスパネルを開けたまま、または取り外したまま長時間サーバーを動作させないでくだ さい。この状態でサーバーを動作させると、通気が正しく行われず、冷却機構が正常に動作 しなくなるため、高温によって装置が損傷する可能性があります。

静電気対策

システムをセットアップしたり、コンポーネントを取り扱う際に従わなければならない注意事項を必ず守ってください。人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバイスが損傷することがあります。 その結果、システムまたはコンポーネントの耐用年数が短くなることがあります。

静電気による損傷を防止するには、次の点に注意してください。

- 運搬や保管の際は、静電気防止用のケースに入れ、手で直接触れることは避けます。
- 静電気に弱い部品は、静電気防止措置のなされている作業台に置くまでは、専用のケースに入れたままにしておきます。
- 部品をケースから取り出す前に、まずケースごと、アースされている面に置きます。
- ピン、リード線、または回路には触れないようにします。
- 静電気に弱い部品に触れなければならないときには、常に自分の身体に対して適切なアースを行います。静電気に弱い 部品を取り扱うときには、以下のうち1つ以上の方法でアースを行ってください。
 - o すでにアースされているワークステーションまたはコンピューターシャーシにアースバンドをつなぎます。アース

バンドは柔軟な帯状のもので、アースコード内の抵抗は、1 MΩ±10%です。アースを正しく行うために、アースバンドを肌に密着させてください。

- 立って作業する場合、かかとやつま先にアースバンドを付けます。導電性または静電気拡散性の床の場合、両足に アースバンドを付けます。
- 。 作業用具は導電性のものを使用します。
- 折りたたみ式の静電気防止マットなどが付いた携帯式作業用具もあります。

上記のような、適切なアースを行うための器具がないときは、製品販売店にお問い合わせください。

静電気の詳細および製品のインストールの支援については、製品販売店にお問い合わせください。

操作

この章では、ハードウェアコンポーネントの取り付けまたは取り外しを行う前後に実行するハードウェアの操作、また はサーバーメンテナンスまたはトラブルシューティング手順の実行について説明します。これらのハードウェア操作を実行 する前に、以下を確認してください。

- <u>ラックに関する警告と注意事項</u>
- サーバーに関する警告と注意事項

サブトピック

<u>iLOサービスポート</u> <u>Intel VROCのサポート</u> <u>サーバーのUID LED</u> <u>ディスプレイ装置のセットアップ</u> <u>Irusted Platform Module 2.0</u> <u>Trusted Platform Module 2.0のガイドライン</u> システムバッテリの情報

iLOサービスポート

iLOサービスポートは、サーバーの前面にある、iLOのラベルが付けられているUSBポートです。 サーバーに物理的にアクセスできる場合、iLOサービスポートを使用して次のことができます。

- サポートされているUSBフラッシュドライブにActive Health Systemログをダウンロードします。
 この機能を使用する場合、接続されているUSBフラッシュドライブにホストOSはアクセスできません。
- 標準のUSB Type A Type CケーブルまたはUSB Type C Type Cケーブルを使用してホストシステム (Windows/Mac/Linuxラップトップまたはデスクトップ)を接続し、以下にアクセスします。
 - 。 iLOのWebインターフェイス
 - 。 リモートコンソール
 - iLO RESTful API
 - CLI

iL0サービスポートを使用すると、次のようになります。

- 操作がiL0イベントログに記録されます。
- iLOサービスポートのステータスを示すようにサーバーのUIDが点滅します。

RESTクライアントとiLO RESTful APIを使用してiLOサービスポートのステータスを取得することもできます。

- iL0サービスポートを使用してサーバー内のデバイスまたはサーバー自体を起動することはできません。
- iL0サービスポートに接続してサーバーにアクセスすることはできません。
- 接続されているデバイスにサーバーからアクセスすることはできません。

iLOサービスポートについて詳しくは、iLOユーザーガイドを参照してください。

https://www.hpe.com/support/hpeilodocs-quicklinks

Intel VROCのサポート

Intel Virtual RAID on CPU (Intel VROC)は、エンタープライズレベルのハイブリッドRAIDサポートを提供します。以下の 情報に注意してください。

- Intel VROCは、直接接続されたNVMe SSDにRAIDサポートを提供します。
- Intel VROCドライバーが必要です。OS固有のドライバーのダウンロードについては、次のページを参照してください。

<u>https://support.hpe.com/hpesc/public/docDisplay?docId=sd00002239ja_jp&page=GUID-249FA246-0985-4598-8D7E-</u> 94069560F959.html

- Intel VROCではサーバー起動モードをUEFIモードに設定する必要があります。
- デフォルトでは、Intel VROC RAIDサポートは無効になっています。OS起動前環境では、UEFIシステムユーティリティを 使用してIntel VROCを有効にし、VROC RAIDボリュームを作成します。これらのタスクはIntelligent Provisioningでは サポートされていません。
- VROC RAIDボリュームは、同じインターフェイスとフォームファクターのドライブを使用する必要があります。
- Intel VROCでは、以下のツールを通じたRAID管理がサポートされています。
 - 。 任意のOS: UEFIシステムユーティリティ
 - Windows : Intel VROC GUI, Intel VROC CLI
 - Linux : mdadm CLI

Intel VROCの機能と構成について詳しくは、<u>ストレージコントローラーの構成</u>を参照してください。

サーバーのUID LED

UID LEDを使用すると、特定のサーバーが他の機器と共に高密度のラックに展開されている場合に、オンサイト担当のサ ポート技術者がその識別や場所の特定をすばやく行うのに役立ちます。また、リモート管理、ファームウェアのアップグ レード、または再起動シーケンスが進行中かどうかを識別するためにも使用できます。

サブトピック

UIDボタンを使用したサーバーヘルスの概要の表示

UIDボタンを使用したサーバーヘルスの概要の表示

前提条件

外部モニターが接続されています。

• iLO Webインターフェイスのアクセス設定ページで、外部モニターにサーバーヘルスを表示機能が有効になっています。

このタスクについて

UIDボタンを使用すると、iLOのサーバーヘルスサマリー画面を外部モニターに表示できます。この機能は、サーバーの電源 がオンまたはオフのときに使用できます。この機能は、サーバーが起動しない場合のトラブルシューティングに使用してく ださい。

注意 UIDボタンを押して放します。5秒以上押し続けると、正常なiLOの再起動またはハードウェ アiLOの再起動を開始します。ハードウェアiLO再起動中にデータの損失やNVRAMの破損が発 生する可能性があります。

手順

1. UIDボタンを押して放します。

外部モニターにサーバーヘルスサマリー画面が表示されます。詳しくは、iLOトラブルシューティングガイドを参照してください。

https://www.hpe.com/support/hpeilodocs-quicklinks

2. 再度UIDボタンを押して、サーバーヘルスサマリー画面を閉じます。

ディスプレイ装置のセットアップ

このサーバーでは、VGAポートとDisplayPort 1.1aの両方がサポートされています。ディスプレイデバイスを接続する前に、以下の点に注意してください。

- 表示出力モード:
 - VGAポートとDisplayPortの両方を使用して2台のディスプレイデバイスをサーバーに接続すると、同じ画像が両方の デバイスにミラーリングされます。
 - iL0チップセットの内蔵ビデオコントローラーは、デュアルディスプレイモードや画面拡張モードをサポートしていません。デュアルディスプレイを有効にするには、互換性のあるグラフィックスカードを取り付けます。
- DisplayPort用にHDMIまたはDVIアダプターを使用する場合は、アクティブタイプのアダプターを使用してください。 DP++の記号でマークされたパッシブタイプのアダプターはサポートされていません。

可能な限り、同じディスプレイ接続のタイプを使用してください。例えば、モニターにVGAポートしかない場合は、サー バーのVGAポートを使用します。他のアダプター、変換ケーブル、またはドングルを使用すると、表示品質が低下した り、接続の遅延が発生したりする可能性があります。

Trusted Platform Module 2.0

Trusted Platform Module 2.0 (TPM) は、プラットフォームの認証に使用されるアーティファクトを安全に保存するハード ウェアベースのシステムセキュリティ機能です。これらのアーティファクトには、パスワード、証明書、暗号鍵などが含ま れます。

TPM 2.0はDC-SCMに組み込まれています。

TPM 2.0は、特定のオペレーティングシステムサポート (Microsoft Windows Server 2012 R2以降など) でサポートされま す。オペレーティングシステムサポートについて詳しくは、Hewlett Packard EnterpriseのWebサイト (<u>https://www.hpe.com/info/quickspecs</u>) にある製品のQuickSpecsを参照してください。Microsoft WindowsのBitLockerド ライブ暗号化機能について詳しくは、MicrosoftのWebサイト (<u>https://www.microsoft.com</u>) を参照してください。

Trusted Platform Module 2.0のガイドライン

注意

- 必ず、このセクションに記載されているTPMのガイドラインに従ってください。ガイドラインに従わないと、ハードウェアが損傷したり、データアクセスが中断したりする場合があります。
- サーバーの変更やOSでのTPMのサスペンドまたは無効化のための手順に従っていないと、 TPMを使用しているOSですべてのデータアクセスがロックされる場合があります。これに は、システムまたはオプションファームウェアのアップデート、ハードウェア(システ ムボードやドライブなど)の交換、TPMのOS設定の変更が含まれます。
- OSのインストール後にTPMモードを変更すると、データ消失などの問題の原因となります。
- TPMを構成するには、UEFIシステムユーティリティを使用します。システムユーティリティ画面で、システム構成
 BIOS/プラットフォーム構成(RBSU) シサーバーセキュリティシ Trusted Platform Moduleオプションを選択します。詳しくは、UEFIユーザーガイドを参照してください。

https://www.hpe.com/support/hpeuefisystemutilities-quicklinks

- Microsoft Windows BitLockerドライブ暗号化機能を使用する場合は、常にリカバリキーまたはパスワードを保持してください。システム整合性が侵害された可能性をBitLockerが検出した後にリカバリモードに入るには、リカバリキーまたはパスワードが必要です。
- HPEは、TPMの不適切な使用によって発生したデータアクセスのブロックについては、責任を負いかねます。操作手順については、オペレーティングシステムに付属の暗号化テクノロジー機能のドキュメントを参照してください。

システムバッテリの情報

サーバーには、リアルタイムクロックに電力を供給する二酸化マンガンリチウム、五酸化バナジウム、またはアルカリバッ テリが内蔵されています。

ハードウェアオプション

サブトピック

<u>Hewlett Packard Enterprise製品のQuickSpecs</u> <u>ハードウェアオプションの取り付けのガイドライン</u> 取り付け前の手順 取り付け後の手順 冷却 ドライブ Energy Pack GPU <u>管理</u> <u>メモリ</u> <u>ネットワーク</u> <u>0Sブートデバイス</u> 電源装置 <u>プロセッサーとヒートシンク</u> <u>ラックマウントオプション</u> ライザー <u>セキュリティ</u> <u>ストレージ</u> <u>ストレージコントローラー</u>

Hewlett Packard Enterprise製品のQuickSpecs

製品について詳しく知るには、Hewlett Packard Enterprise Webサイト(<u>https://www.hpe.com/info/quickspecs</u>)を検索 して製品のQuickSpecsを参照してください。

- サポートされるオプション
- サポートされている構成
- コンポーネントの互換性
- 新機能
- 仕様
- 部品番号

ハードウェアオプションの取り付けのガイドライン

- サーバーを初期化する前にハードウェアオプションを取り付けます。
- 複数のオプションを取り付ける場合は、すべてのハードウェアオプションの取り付け手順をよく読んで類似の手順を確認してから、効率よく取り付け作業を行うようにしてください。
- ハードウェアオプションの取り付け時に内部ケーブル接続を行う場合は、ケーブル接続のガイドラインを参照してください。

取り付け前の手順

サブトピック

<u>サーバーデータバックアップ</u> サーバーの電源を切る <u>ラックからサーバーを引き出す</u> <u>フロントベゼルを取り外す</u> <u>ラックからサーバーを取り外す</u> 電源装置を取り外す <u>アクセスパネルを取り外す</u> GPUを取り外す GPUケージを取り外す GPUケージを持ち上げて保持する <u>フロント通気パネルを取り外す</u> <u>エアバッフルを取り外す</u> ファンケージを取り外す ケーブルトラフカバーを取り外す <u>リア通気パネルを取り外す</u> ライザーケージを取り外す

サーバーデータバックアップ

データ損失を防ぐために、ハードウェアオプションの取り付けまたは取り外しを行う前、またはサーバーメンテナンスやト ラブルシューティング手順を実行する前に、サーバーのすべてのデータをバックアップしてください。

このコンテキストでのサーバーデータは、ハードウェアのメンテナンスまたはトラブルシューティング手順の完了後、シス テムを通常の動作環境に戻すために必要になる可能性がある情報を指します。これには、次のような情報が含まれる可能性 があります。

- ユーザーデータファイル
- ユーザーアカウント名とパスワード
- アプリケーションの設定とパスワード
- コンポーネントドライバーとファームウェア
- TPMリカバリキー/パスワード
- BIOS構成設定 UEF1システムユーティリティのバックアップおよびリストア機能を使用します。詳しくは、UEF1ユー ザーガイド (<u>https://www.hpe.com/support/hpeuefisystemutilities-quicklinks</u>)を参照してください。

- カスタムデフォルトシステム設定
- ・ 電源オンおよびBIOS管理者アクセス、不揮発性メモリ、およびサーバー構成ロック(HPE Trusted Supply Chain サーバー用)に必要なパスワードを含むセキュリティパスワード
- サーバーシリアル番号と製品ID
- iL0関連データ iL0バックアップおよびリストア機能を使用します。詳しくは、iL0のユーザーガイド (<u>https://www.hpe.com/support/hpeilodocs-quicklinks</u>)を参照してください。
 - 。 iLOのライセンス
 - 。 お客様のiLOユーザー名、パスワード、およびDNS名
 - 。 iL0構成設定

1

サーバーの電源を切る

アップグレードやメンテナンスの手順でサーバーの電源を切る前に、<u>重要なサーバーデータとプログラムのバックアップを</u> <u>実行してください</u>。

重要 サーバーがスタンバイモードになっていても、システムへの補助電源の供給は続行します。

以下のいずれかの方法で、サーバーの電源を切ります。

- 電源ボタンを押して離します。
 この方法は、サーバーがスタンバイモードに入る前に、アプリケーションとOSの制御されたシャットダウンを有効にします。また、OS構成またはポリシーによって管理されるシャットダウン動作を有効にすることもできます。
- 電源ボタンを4秒以上押したままにして、強制的にサーバーをスタンバイモードにします。
 この方法は、正しい順序でアプリケーションと0Sを終了せずに、サーバーを強制的にスタンバイモードにします。アプリケーションが応答しなくなった場合は、この方法で強制的にシャットダウンすることができます。
- iLO経由の仮想電源ボタンを使用する。
 この方法は、サーバーがスタンバイモードに入る前に、アプリケーションとOSを正しい順序でリモートでシャットダウンします。

手順を続行する前に、サーバーがスタンバイモード(システム電源LEDがオレンジ色)になっていることを確認してください。

ラックからサーバーを引き出す

前提条件

- この手順を実行する前に、<u>ラックに関する警告と注意事項</u>を確認してください。
- T-25トルクスドライバー このツールは、シャーシイヤー内にある輸送用ネジが固定されている場合に必要です。

このタスクについて

警告

サーバーのレールリリースラッチを押す際には、けがをしないように十分に注意してください。インナーレールに指をはさむ場合があります。

必要に応じて、輸送用ネジを緩め、シャーシイヤーラッチを使用して、サーバーをラックからスライドさせて完全に引き出 します。

フロントベゼルを取り外す

このタスクについて

iL0仮想電源ボタンを使用してサーバーの電源のオン/オフを切り替えている場合、フロントベゼルを取り外す必要はありま せん。フロントパネルコンポーネントにアクセスする必要がある場合のみ、フロントベゼルを取り外します。

手順

1. Kensingtonセキュリティロックが取り付けられている場合は、取り外します。

詳しくは、ロックのドキュメントを参照してください。

- 2. ベゼルリリースラッチを押してから、ベゼルを回転させて開きます。
- 3. ベゼルの右側をフロントパネルから外します。

ラックからサーバーを取り外す

前提条件

ラックからの取り外し中は、必ず適切な人数でサーバーを持ち上げたり固定したりする作業を行ってください。サーバーを胸より高く持ち上げるときは、サーバーを取り外すために作業者がさらに2人必要になる場合があります。1人がサーバーの重量を支え、別の2人がサーバーをスライドさせてラックから引き出します。

- この手順を実行する前に、以下を参照してください。
 - <u>ラックに関する警告と注意事項</u>
 - <u>サーバーに関する警告と注意事項</u>
- 完全に実装されたサーバーは重量があります。Hewlett Packard Enterpriseでは、外部サーバーコンポーネントを取り 外してから、サーバーをラックから取り外すことをお勧めします。
- この手順を実行する前に、T-25トルクスドライバーを用意しておきます。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 必要に応じて、輸送用ネジを緩め、シャーシイヤーラッチを使用して、サーバーをラックからスライドさせて完全に引き出します。

5. リア側のレールリリースラッチを押したまま、サーバーをスライドさせてラックから完全に取り外します。

6. サーバーを平らで水平な作業台に置きます。

電源装置を取り外す

このタスクについて

警告 表面が熱くなっているため、やけどをしないように、電源装置、電源装置ブランク、または デュアルスロット電源装置アダプターが十分に冷めてから手を触れてください。

注意 不適切な冷却および高温による装置の損傷を防止するために、すべてのベイに必ず、コン ポーネントかブランクのどちらかを実装してからサーバーを動作させてください。

- 1. <u>サーバーの電源を切ります</u>。
- 2. 電源装置を取り外します:
 - a. 電源コード、ワイヤー、ケーブルをストレインリリーフストラップから外します。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

- b. リリースラッチを押したまま、電源装置を取り外します。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

アクセスパネルを取り外す

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

警告 表面が熱くなっているため、やけどをしないように、ドライブやシステムの内部部品が十分 に冷めてから手を触れてください。

注意

電子部品の損傷を防止するために、正しくアースを行ってから取り付け、取り外し、または 交換手順を開始してください。正しくアースを行わないと<u>静電気放電</u>を引き起こす可能性が あります。

注意

適切なシステム冷却を維持するため、アクセスパネルを開けたまま、または取り外したまま 長時間サーバーを動作させないでください。この方法でのサーバーの動作によって、不適切 なシステムのエアフローが発生します。内部ホットプラグコンポーネント手順の場合、60秒 以内に手順を完了してください。そうしないと、システムの温度が上昇し、安全しきい値を 外れる可能性があります。これが発生した場合:

- ヘルスLEDがオレンジ色で点滅します。
- オペレーティングシステムが正常にシャットダウンします。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. 以下のいずれかを実行します。

- <u>サーバーをラックから引き出します</u>。
- サーバーをラックから取り外します。
- 5. アクセスパネルを取り外します:
 - a. アクセスパネルのネジを取り外します。
 - b. 必要に応じて、アクセスパネルのラッチをロック解除します。
 - c. シャーシからアクセスパネルを離すには、リリースボタンを押し、ラッチを引き上げます。
 - d. アクセスパネルを引き上げます。

GPUを 取り 外す

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

手順

1. <u>サーバーの電源を切ります</u>。

- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. 2本の固定ネジを緩めて、GPUケージからGPUのトップブラケットを取り外します。

- 8. 高電力GPUを取り外す場合は、GPUからGPU補助電源ケーブルを外します。
- 9. GPUを取り外します。
 - シングル幅GPU

• ダブル幅GPU

GPUケージを取り外す

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

この手順は、4スロットPCIe x16スイッチボードを搭載したGPUケージにのみ適用されます。

警告

表面が熱くなっているため、やけどをしないように、ドライブやシステムの内部部品が十分 に冷めてから手を触れてください。

注意

電子部品の損傷を防止するために、正しくアースを行ってから取り付け、取り外し、または 交換手順を開始してください。正しくアースを行わないと<u>静電気放電</u>を引き起こす可能性が あります。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. エアバッフルを取り外します。
- 8. <u>ファンケージを取り外します</u>。
- 9. <u>GPUケージからすべてのGPUを取り外します</u>。
- 10. PCIe x16スイッチボードからすべてのケーブルを外します。
- 11. 脱落防止ネジを緩めてから、GPUケージを取り外します。

GPUケージを持ち上げて保持する

前提条件

- サーバーからの取り外し中は、必ず適切な人数でGPUケージを持ち上げたり固定したりする作業を行ってください。GPU ケージを持ち上げて保持する際には、その重量を支える追加の作業者が必要です。
- この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

この手順は、PCIe x16キャプティブライザーを搭載したGPUケージにのみ適用されます。

注意 電子部品の損傷を防止するために、正しくアースを行ってから取り付け、取り外し、または 交換手順を開始してください。正しくアースを行わないと<u>静電気放電</u>を引き起こす可能性が あります。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. エアバッフルを取り外します。
- 8. <u>ファンケージを取り外します</u>。
- 9. <u>GPUケージからすべてのGPUを取り外します</u>。
- 10. GPUケージの下にあるコンポーネントを取り付けたり取り外したりするには:
 - a. 脱落防止ネジを緩めます。
 - b. GPUケージを持ち上げて、ケージの底部がシャーシの前端より上に位置する高さまで保持します。 キャプティブライザー信号ケーブルがシステムボードに接続されたままであることを確認します。

フロント通気パネルを取り外す

前提条件

- フロント通気パネルの取り外し中は、必ず適切な人数でGPUケージを持ち上げたり固定したりする作業を行ってください。GPUケージにPCIe x16キャプティブライザーが装備されている場合は、さらに2人の作業者が必要になります:2人がGPUケージをシャーシの前端より上に持ち上げて保持し、もう1人がフロント通気パネルを取り外します。
- この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. <u>エアバッフルを取り外します</u>。
- 8. <u>ファンケージを取り外します</u>。
- 9. <u>GPUケージからすべてのGPUを取り外します</u>。
- 10. 以下のいずれかを実行します。
 - GPUケージにキャプティブライザーが取り付けられている場合、GPUケージをシャーシの前端より上に持ち上げて保持します。

- GPUケージにスイッチボードが取り付けられている場合、GPUケージを取り外します。
- 11. フロント通気パネルを取り外します。
 - a. フロント通気パネルのネジを取り外します。

b. フロント通気パネルを取り外します。

フロント通気パネルは今後使用するために保管しておいてください。

- 12. <u>GPUケージを取り付けます</u>。
- 13. 次のコンポーネントが取り外されている場合は、取り付けます。
 - <u>GPU</u>
 - <u>PCIe NICアダプター</u>

エアバッフルを取り外す

このタスクについて

注意

適切な冷却を確保するために、サーバーを動作させるときは、アクセスパネル、バッフル、 拡張スロットカバー、またはブランクを必ず取り付けてください。サーバーがホットプラグ 対応コンポーネントをサポートしている場合は、アクセスパネルを開ける時間を最小限に抑 えてください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- すべての周辺ケーブルをサーバーから抜き取ります。 3.
- 4. 以下のいずれかを実行します。
 - サーバーをラックから引き出します。
 - サーバーをラックから取り外します。
- 5. <u>アクセスパネルを取り外します</u>。
- 6. エアバッフルを取り外します。

ファンケージを取り外す

前提条件

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. エアバッフルを取り外します。
- 8. すべてのファンモジュールを取り外します。

- 9. ファンケージを取り外します。
 - a. ラッチを開きます。
 - b. ファンケージを持ち上げてシャーシから取り外します。

ケーブルトラフカバーを取り外す

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. エアバッフルを取り外します。
- 8. <u>ファンケージを取り外します</u>。
- 9. ケーブルトラフカバーを取り外します。
 - 右側

• 左側

リア通気パネルを取り外す

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

手順

1. <u>サーバーの電源を切ります</u>。

- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
 - a. 脱落防止ネジを緩めます。
 - b. リア通気パネルの底部を傾けて、パネルをサーバーから引き上げます。

ライザーケージを取り外す

このタスクについて

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。

- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気ブランクを取り外します。
- 8. 拡張カードが内部ケーブルでライザーに取り付けられている場合は、カードからケーブルを抜き取ります。
- 9. ラッチを開き、ライザーケージをサーバーから取り外します。
 - プライマリライザーケージ

• セカンダリライザーケージ

取り付け後の手順

サブトピック

ライザーケージを取り付ける リア通気パネルの取り付け ケーブルトラフカバーを取り付ける ファンケージを取り付ける エアバッフルを取り付ける GPUケージとGPUを取り付ける アクセスパネルを取り付ける サーバーをラックに取り付ける サーバーの電源を入れる

ライザーケージを取り付ける

前提条件
- 1. 拡張カードまたはその内部ケーブル接続が取り外されている場合、これらのコンポーネントを再び取り付けます。
- 2. ライザーケージをサーバーに取り付け、ラッチを閉じます。
 - a. ラッチを開きます。
 - b. ライザーケージをサーバーに取り付け、ラッチを閉じます。
 ライザーケージのフックがシステムボード上のスプールとかみ合っていることを確認します。
 - プライマリライザーケージ

セカンダリライザーケージ

3. ライザーケージの取り外しを必要とする手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行 します。

リア通気パネルの取り付け

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

- 1. リア通気パネルを取り付けます。
 - a. リア通気パネルのタブをリアパネルの切り込みに合わせます。
 - b. リア通気パネルの底部を傾けてリアパネルに取り付けます。
 - c. 脱落防止ネジを締めます。

- 2. <u>アクセスパネルを取り付けます</u>。
- 3. リア通気パネルの取り外しを必要とする手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行 します。

ケーブルトラフカバーを取り付ける

- 1. ケーブルトラフカバーを取り付けます。
 - 右側

左側

- 2. <u>ファンケージを取り付けます</u>。
- 3. <u>エアバッフルを取り付けます</u>。
- 4. アクセスパネルを取り付けます。
- 5. ケーブルトラフカバーの取り外しを必要とする手順で実施しなければならない、取り付け後またはメンテナンスの手順 を実行します。

ファンケージを取り付ける

- 1. ファンケージを取り付けます。
 - a. ファンケージをシャーシ内に下げます。
 - b. ラッチを閉じます。

- 2. すべてのファンモジュールを取り付けます。
 - a. ファンモジュールをファンベイに下ろします。
 - b. ファンモジュールを押し下げて、ベイにしっかりと固定されていることを確認します。
 クリック音は、ファンが適切にかみ合っていることを示します。

3. ファンケージを取り外した場合に必要な手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行 します。

エアバッフルを取り付ける

手順

- 1. すべての内部ケーブルが適切に配線されていて、エアバッフルを取り付ける妨げになっていないことを確認します。
- 2. エアバッフルのガイドをファンケージのスロットに合わせて、エアバッフルをシャーシに取り付けます。

エアバッフルが所定の位置に正しく収まっていることを確認します。

- 3. <u>アクセスパネルを取り付けます</u>。
- エアバッフルを取り外した場合に必要な手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行します。

GPUケージとGPUを取り付ける

このタスクについて

- サーバーへの取り付け中は、必ず適切な人数でGPUケージを持ち上げたり固定したりする作業を行ってください。GPU ケージを取り付ける際には、その重量を支える追加の作業者が必要です。
- この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

手順

1. GPUケージを取り付けます。

- a. GPUケージの三角形をサーバーの対応する三角形に合わせて、GPUケージをサーバーに取り付けます。
- b. 固定ネジを締めます。

- 2. 取り外していた場合は、<u>すべてのケーブルをPCIe x16スイッチボードに接続します</u>。
- 3. 2本の固定ネジを緩めて、GPUケージからGPUのトップブラケットを取り外します。

- 4. すべてのGPUを取り付けます。
 - シングル幅GPU

• ダブル幅GPU

- 5. GPU補助電源ケーブルを接続するには:
 - a. <u>ケーブルホルダーカバーを取り外します。</u>
 - b. <u>GPU補助電源ケーブルを接続します</u>。
 - c. GPU補助電源ケーブルをケーブルトラフに通してから、ケーブルトラフカバーを取り付けます。
- 6. GPUトップ ブラケットをGPUケージに取り付け、2本の固定ネジを締めます。

7. GPUケージを取り外した場合に必要な手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行します。

アクセスパネルを取り付ける

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

- 1. アクセスパネルのラッチを開けたまま、ラッチの下部にある穴に、シャーシ上のガイドピンを挿入します。
- アクセスパネルのラッチを閉じます。
 アクセスパネルが完全に閉じるまでスライドさせます。
- 3. アクセスパネルのラッチをロックします。
- 4. リアのネジを取り付けます。

5. アクセスパネルを取り外した場合に必要な手順で実施しなければならない、取り付け後またはメンテナンスの手順を実行します。

サーバーをラックに取り付ける

前提条件

- ラックへの取り付け中は、必ず適切な人数でサーバーを持ち上げたり固定したりする作業を行ってください。サーバーを胸より高く持ち上げるときは、サーバーを設置するために作業者がさらに2人必要になる場合があります。1人がサーバーの重量を支え、別の2人がサーバーをスライドさせてラックに押し込みます。
- この手順を実行する前に、以下を参照してください。
 - 。 空間および通気要件
 - ラックに関する警告と注意事項
 - 。 <u>サーバーに関する警告と注意事項</u>
- 完全に実装されたサーバーは重量があります。Hewlett Packard Enterpriseでは、外部シャーションポーネントを取り 外してから、ラックにサーバーを取り付けることをお勧めします。
- この手順を実行する前に、T-25トルクスドライバーを用意しておきます。

手順

1. レールをロック位置まで完全に伸ばします。

- 2. サーバーをラックに取り付けます。
 - a. インナーレールをスライドレールに挿入します。
 - b. 後端のレールリリースラッチを押したまま、シャーシイヤーがラックのポストにぴったりくっつくまでサー バーをラック内にスライドさせます。

- 3. 周辺装置のすべてのケーブルをサーバーに接続します。
- 4. 各電源コードをサーバーに接続します。
- 5. 各電源コードを電源ソースに接続します。
- 6. ケーブルマネジメントアームが開いていた場合は、アームを閉じた位置に戻し、CMA固定ブラケットをマウンティング レールに挿入します。

ブラケットが所定の位置にロックされたことを示すカチッという音がします。

サーバーの電源を入れる

手順

- 電源/スタンバイボタンを押します。
- iL0経由の仮想電源ボタンを使用します。

冷却

サブトピック

<u>最大システムファンモジュールを取り付ける</u>

最大システムファンモジュールを取り付ける

このタスクについて

注意 不適切な冷却および高温による装置の損傷を防止するために、すべてのベイに必ず、コン ポーネントかブランクのどちらかを実装してからサーバーを動作させてください。

同じサーバー内でパフォーマンスシステムファンモジュールと最大システムファンモジュー ルを混在させないでください。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. 以下のいずれかを実行します。
 - <u>サーバーをラックから引き出します</u>。
 - <u>サーバーをラックから取り外します</u>。
- 5. <u>アクセスパネルを取り外します</u>。
- 6. すべてのパフォーマンスシステムファンモジュールを取り外します。
 - a. ラッチを押したままにします。
 - b. ファンケージからファンモジュールを持ち上げます。

- 7. すべての最大システムファンモジュールを取り付けます。
 - a. ファンモジュールをベイに下ろします。
 - Dァンモジュールを押し下げて、ベイにしっかりと固定されていることを確認します。
 クリック音は、ファンが適切にかみ合っていることを示します。

- 8. <u>アクセスパネルを取り付けます。</u>
- 9. <u>サーバーをラックに取り付けます。</u>
- 10. 周辺装置のすべてのケーブルをサーバーに接続します。
- 11. 各電源コードを電源ソースに接続します。
- 12. 各電源コードをサーバーに接続します。
- 13. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

ドライブ

サブトピック

<u>ドライブの取り付けのガイドライン</u> <u>SFF (2.5型) NVMeドライブを取り付ける</u> <u>E3.Sドライブを取り付ける</u>

ドライブの取り付けのガイドライン

次の一般的なガイドラインに従ってください。

• システムがすべてのドライブ番号を自動的に設定します。

注意

ドライブが取り付けられていない状態でサーバーを購入した場合、一部のドライブベイが 空で、他のドライブベイにドライブブランクが装着されている場合があります。システム の適切な冷却を維持するため、ドライブまたはドライブブランクが取り付けられていない 状態でサーバーを動作させないでください。

- ドライブを1台しか使用しない場合、最も小さいドライブ番号のベイに取り付けてください。
 ドライブ番号については、ドライブベイの番号を参照してください。
- このサーバーは、ドライブタイプの混在をサポートしていません。
- NVMeドライブを取り付ける場合は、同じタイプのドライブを取り付けてください。NVMeドライブの混在はサポートされていません。
- すべてのドライブを同じドライブアレイにまとめる場合は、以下の基準を満たす必要があります。
 - 。 すべてがハードディスクドライブ、またはすべてがソリッドステートドライブでなければなりません。
 - 。 ストレージの容量効率を最大限に高めるには、各ドライブを同じ容量にしてください。

SFF(2.5型)NVMeドライブを取り付ける

このタスクについて

注意 人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのベイに必ず、コン ポーネントかブランクのどちらかを実装してからサーバーを動作させてください。

手順

- 1. 取り付けられている場合、フロントベゼルを取り外します。
- 2. ドライブブランクを取り外します。

3. ドライブを準備します。

4. ドライブを取り付けます。

- 5. <u>ドライブLEDの定義から、ドライブのステータスを確認します</u>。
- 6. 取り外している場合は、フロントベゼルを取り付けます。
- 7. ドライブアレイを構成するには、<u>関連するストレージコントローラーガイド</u>を参照してください。

タスクの結果

取り付け手順は完了です。

E3.Sドライブを取り付ける

このタスクについて

注意 人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意 不適切な冷却および高温による装置の損傷を防止するために、すべてのベイに必ず、コン ポーネントかブランクのどちらかを実装してからサーバーを動作させてください。

手順

- 1. 取り付けられている場合、フロントベゼルを取り外します。
- 2. ドライブブランクを取り外します。

ブランクは、将来使用できるように保管しておいてください。

3. ドライブを準備します。

4. ドライブを取り付けます。

⊘ 注記

ドライブが正常に取り付けられたことを確認するには、ラッチがドライブケージにかみ 合っていることを確認します。

- 5. <u>ドライブLEDの定義から、ドライブのステータスを確認します</u>。
- 6. 取り外している場合は、フロントベゼルを取り付けます。
- 7. ドライブアレイを構成するには、<u>関連するストレージコントローラーガイド</u>を参照してください。

タスクの結果

取り付け手順は完了です。

Energy Pack

サブトピック

<u>HPE Smartストレージバッテリ</u> <u>HPE Smartストレージハイブリッドキャパシター</u> <u>Energy Packを取り付ける</u>

HPE Smartストレージバッテリ

1個の96Wバッテリで最大24のデバイスをサポートできます。

バッテリの取り付け後、充電に最大で2時間かかることがあります。バックアップ電源が必要なコントローラーの機能は、 バッテリがバックアップ電源をサポートできるようになるまで再度有効になりません。

このサーバーは、260 mmケーブル付き96 W HPE Smartストレージバッテリをサポートします。

詳しくは、HPE SmartストレージバッテリおよびハイブリッドキャパシターのQuickSpecsを参照してください。

<u>https://www.hpe.com/psnow/doc/a00028553enw.pdf?jumpid=in_pdp-psnow-qs</u>

HPE Smartストレージハイブリッドキャパシター

コンデンサーパックは、最大3つまでのデバイスをサポートできます。

このサーバーは、260 mmケーブル付きHPE Smartストレージハイブリッドキャパシターをサポートします。

HPE Smartストレージハイブリッドキャパシターを取り付ける前に、このコンデンサーパックをサポートするためのファー ムウェアの最小要件をシステムBIOSが満たしていることを確認します。

!) 重要

システムBIOSまたはコントローラーファームウェアがファームウェアの最小推奨バージョン よりも古い場合、コンデンサーパックは1つのデバイスのみサポートします。

コンデンサーパックは、システムの起動後に完全に充電されています。

詳しくは、HPE SmartストレージバッテリおよびハイブリッドキャパシターのQuickSpecsを参照してください。

https://www.hpe.com/psnow/doc/a00028553enw.pdf?jumpid=in_pdp-psnow-qs

サブトピック

<u>最小ファームウェアバージョン</u>

最小ファームウェアバージョン

製品	最小ファームウェアバージョン
サーバーシステムROM	1. 20

HPE MRタイプoおよびタイプp Gen11コントローラー 52.24.3-4948

Energy Packを取り付ける

このタスクについて

🔨 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

- 1. <u>すべてのサーバーデータをバックアップします</u>。
- 2. <u>サーバーの電源を切ります</u>。
- 3. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 4. すべての周辺ケーブルをサーバーから抜き取ります。
- 5. <u>サーバーをラックから取り外します</u>。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. エアバッフルを取り外します。
- 8. <u>ファンケージを取り外します</u>。
- 9. <u>GPUケージからすべてのGPUを取り外します</u>。
- 10. 以下のいずれかを実行します。
 - GPUケージにキャプティブライザーが取り付けられている場合、GPUケージをシャーシの前端より上に持ち上げて保持します。
 - GPUケージにスイッチボードが取り付けられている場合、GPUケージを取り外します。
- 11. Energy Packを取り付けます。

- 12. <u>GPUケージとGPUを取り付けます</u>。
- 13. ファンケージを取り付けます。
- 14. エアバッフルを取り付けます。
- 15. <u>アクセスパネルを取り付けます。</u>
- 16. <u>サーバーをラックに取り付けます。</u>
- 17. 周辺装置のすべてのケーブルをサーバーに接続します。
- 18. 各電源コードをサーバーに接続します。
- 19. 各電源コードを電源ソースに接続します。
- 20. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

GPU

サブトピック

<u>GPUの取り付けに関するガイドライン</u> <u>GPUの取り付け</u> 構成済みサーバーでのGPU 1/0ポートケーブルの接続

GPUの取り付けに関するガイドライン

 最適なGPUアプリケーションパフォーマンスを確保し、パフォーマンスのボトルネックを防ぐために、次のガイドライン に従ってください。

- GPUはペアで展開するのが最適です。このサーバーでは、8および16シングル幅GPU構成と2、4、8ダブル幅GPU構成が サポートされており、GPUはプロセッサーソケット全体に均等に分散されます。
- ・ システムメモリ:
 - 最小: GPUメモリの合計の1.5倍以上。
 - 推奨: GPUメモリの合計の2.0倍以上。
- このサーバーでは、同じシステム内に異なるGPUモデルを設置できません。
- 適切なシステム冷却を維持するには、GPUの取り付けに4つのファンモジュールすべてが必要です。
- 高出力GPU (> TDP 400 W) をサポートするには、110 W最大システムファンモジュールオプション (P80098-B21) が必要です。
- すべてのGPU構成には、少なくとも5つの電源装置(M-CRPS 1、2、3、5、および7)が必要です。一部のGPUモデルでは、 特定の電源装置モデルが必要です。詳しくは、Hewlett Packard EnterpriseのWebサイト (<u>https://www.hpe.com/info/quickspecs</u>)にあるサーバーのQuickSpecsを参照してください。
- 一部のGPUでは、より高いワット数定格の電源装置が必要です。取り付ける予定のGPUにより高いワット数の電源装置が 必要かどうかを判断するには、Hewlett Packard EnterpriseのWebサイト(<u>https://www.hpe.com/info/quickspecs</u>)に あるサーバーのQuickSpecsを参照してください。
- GPUに必要な制限付き動作時吸気温度は、モデルやサーバーのドライブ構成によって異なります。詳しくは、Extended Ambient Temperature Guidelines for HPE Gen12 Serversを参照してください:

https://www.hpe.com/support/ASHRAEGen12

重要 パッシブ冷却を搭載した高性能GPUのワークロードを処理する場合、最適なシステム冷却を 維持するためにファンが高速で作動することがあります。当然静かな環境が期待されるサイ トまたはその近くにある場所の場合、Hewlett Packard Enterpriseではパッシブ冷却を搭載 したGPUを取り付けることをお勧めしません。

GPUの取り付け

前提条件

1

- <u>GPUの取り付けに関するガイドライン</u>を確認します。
- 高出力GPU (> TDP 75 W) をサポートするには、GPU補助電源ケーブルオプションが必要です。
 - 。 8ピンGPU補助電源ケーブルオプション (P74698-B21)
 - 。 16ピンGPU補助電源ケーブルオプション (P74700-B21)
- 8ダブル幅GPU構成では、PDB 2が取り付けられていることを確認してください。
- この手順を実行する前に、次のものを用意しておきます。
 - 。 T-15トルクスドライバー
 - 。 T-10トルクスドライバー

このタスクについて

注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのPCIeスロットに必ず、ライザースロットブランクか拡張カードのいずれかを実装してから、サーバーを動作させてください。

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. (オプション) GPU I/Oポートケーブルを接続するには、フロント通気パネルを取り外します。
- 8. 2本の固定ネジを緩めて、GPUケージからGPUのトップブラケットを取り外します。

9. GPUスロットブランクを取り外します。

10. ダブル幅GPUを取り付ける場合は、GPU支持ブラケットを取り付けます。

- 11. GPUを取り付けます。
 - シングル幅GPU

• ダブル幅GPU

- 12. GPU補助電源ケーブルを接続するには:
 - a. <u>ケーブルホルダーカバーを取り外します。</u>
 - b. <u>GPU補助電源ケーブルを接続します</u>。
 - c. GPU補助電源ケーブルをケーブルトラフに通してから、ケーブルトラフカバーを取り付けます。
- 13. GPUトップ ブラケットをGPUケージに取り付け、2本の固定ネジを締めます。

- 14. <u>アクセスパネルを取り付けます</u>。
- 15. <u>サーバーをラックに取り付けます</u>。
- 16. 周辺装置のすべてのケーブルをサーバーに接続します。
- 17. 各電源コードをサーバーに接続します。
- 18. 各電源コードを電源ソースに接続します。
- (オプション) GPU I/Oポートケーブルを接続します。
 詳しくは、GPUのドキュメントを参照してください。
- 20. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

構成済みサーバーでのGPU 1/0ポートケーブルの接続

前提条件

- フロント通気パネルの取り外し中は、必ず適切な人数でGPUケージを持ち上げたり固定したりする作業を行ってください。GPUケージにPCIe x16キャプティブライザーが装備されている場合は、さらに2人の作業者が必要になります:2人がGPUケージをシャーシの前端より上に持ち上げて保持し、もう1人がフロント通気パネルを取り外します。
- この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

GPUがサポートするI/Oポートは、GPUモデルによって異なります。詳しくは、GPUのドキュメントを参照してください。

手順

1. <u>サーバーの電源を切ります</u>。

- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. 取り付けられている場合、フロントベゼルを取り外します。
- 7. <u>アクセスパネルを取り外します</u>。
- 8. エアバッフルを取り外します。
- 9. <u>ファンケージを取り外します</u>。
- 10. <u>GPUケージからすべてのGPUを取り外します</u>。
- 11. 以下のいずれかを実行します。
 - GPUケージにキャプティブライザーが取り付けられている場合、GPUケージをシャーシの前端より上に持ち上げて保持します。
 - GPUケージにスイッチボードが取り付けられている場合、GPUケージを取り外します。
- 12. フロント通気パネルを取り外します。
 - a. フロント通気パネルのネジを取り外します。

b. フロント通気パネルを取り外します。

フロント通気パネルは今後使用するために保管しておいてください。

- 13. <u>GPUケージとGPUを取り付けます</u>。
- 14. ファンケージを取り付けます。
- 15. エアバッフルを取り付けます。
- 16. <u>アクセスパネルを取り付けます。</u>
- 17. <u>サーバーをラックに取り付けます。</u>
- 18. 周辺装置のすべてのケーブルをサーバーに接続します。
- 19. 各電源コードをサーバーに接続します。
- 20. 各電源コードを電源ソースに接続します。
- 21. GPU I/Oポートケーブルを接続します。

詳しくは、GPUのドキュメントを参照してください。

22. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

管理

サブトピック

<u>シリアルポートオプション</u>

シリアルポートオプションを取り付けて、物理シリアルデバイスと通信できるようにします。シリアル接続を使用して、シ ステムBIOSにリモートアクセスし、POSTエラーメッセージを表示することもできます。

サブトピック

<u>シリアルポートケーブルの取り付け</u>

シリアルポートケーブルの取り付け

前提条件

この手順を実行する前に、次のものを用意しておきます。

- T-10トルクスドライバー
- スパッジャーまたは小さな持ち上げ工具
- プラスドライバー (No. 1)

このタスクについて

🔿 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

🔨 注意

ポートブランクはEMIシールドを提供し、サーバー内の適切な熱状態を維持するのに役立ち ます。対応するI/Oポートオプションが取り付けられていない状態でポートブランクが取り 外されている場合は、サーバーを操作しないでください。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>プライマリおよびセカンダリライザーケージを取り外します</u>。
- 9. <u>電源装置ベイ1および3から電源装置を取り外します</u>。
- 10. ixポートブラケットを取り外します。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

11. ixポートブランクを取り外します。

- 12. ixポートをタブにスライドさせて、ixポートをブラケットに固定します。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

- 13. ixポートケーブルブラケットを電源装置ベイ1に取り付けます。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

注意

73.5-mm M-CRPS構成でixポートケーブルブラケットを取り付けるときには、ブラケットタブがその前にあるシステムボードのキャパシターに接触していないことを確認してください。

- 14. <u>ixポートケーブルをDC-SCMに接続します</u>。
- 15. <u>電源装置ベイ1および3に電源装置を取り付けます</u>。
- 16. <u>プライマリおよびセカンダリライザーケージを取り付けます</u>。
- 17. リア通気パネルを取り付けます。
- 18. <u>アクセスパネルを取り付けます</u>。
- 19. <u>サーバーをラックに取り付けます</u>。
- 20. 周辺装置のすべてのケーブルをサーバーに接続します。
- 21. 各電源コードをサーバーに接続します。
- 22. 各電源コードを電源ソースに接続します。
- 23. シリアルポートドングルをixポートに接続します。
- 24. <u>サーバーの電源を入れます</u>。

シリアルポートの構成

- 25. シリアルポート設定を構成するには、以下を行います。
 - a. ブート画面で、F9キーを押して、UEFIシステムユーティリティにアクセスします。
 - b. システムユーティリティ画面で、システム構成<u>></u>BIOS/プラットフォーム構成(RBSU)<u>></u>システムオプション<u>></u>シ リアルポートオプション<u>></u>内蔵シリアルポートを選択します。
 - c. 設定を選択します。
 - d. F12キーを押して、選択内容を保存します。
 - e. はい 変更の保存をクリックします。

f. 再起動をクリックします。

タスクの結果

取り付け手順は完了です。

メモリ

サブトピック

<u>HPE Smartメモリの速度と取り付け情報 DIMMの取り付けに関するガイドライン DIMMの取り付け</u>

HPE Smartメモリの速度と取り付け情報

Intel Xeon 6プロセッサーを使用したHPEサーバーのメモリ速度とサーバー固有のDIMM取り付けルールについては、次の関 連するメモリのテクニカルペーパーを参照してください。

https://www.hpe.com/docs/server-memory

DIMMの取り付けに関するガイドライン

DIMMを取り扱うときは、次のことに従ってください。

- <u>静電気防止の注意事項</u>に従ってください。
- DIMMは両端だけを持つようにしてください。
- DIMMの両側のコンポーネントに触れないでください。
- DIMMの下部にあるコネクターに触れないでください。
- DIMMを握るようにして持たないでください。
- DIMMを決して曲げたり、収縮させないでください。

DIMMを取り付けるときは、次のことに従ってください。

- DIMMの位置を合わせて固定する際は、2本の指でDIMMの両端を持つようにしてください。
- DIMMを取り付けるには、DIMMの上部にそって2本の指で軽く押しつけます。

詳しくは、Hewlett Packard EnterpriseのWebサイト (<u>https://www.hpe.com/support/DIMM-20070214-CN</u>) を参照してくだ さい。

DIMMの取り付け

前提条件

- この手順を実行する前に、以下を参照してください。
 - 。 <u>DIMMの取り付け情報</u>

このタスクについて

注意

同じサーバーにデータ幅がx4とx8のDRAMを取り付けないでください。サーバーに取り付けられるすべてのメモリは、タイプが同じである必要があります。異なるタイプのDIMMを取り付けると、BIOSの初期化中にサーバーが停止する可能性があります。

注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのDIMMスロットにDIMM またはDIMMブランクが取り付けられていない限り、サーバーを動作させないでください。

注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. 以下のいずれかを実行します。
 - サーバーをラックから引き出します。
 - <u>サーバーをラックから取り外します</u>。
- 5. <u>アクセスパネルを取り外します</u>。
- 6. <u>エアバッフルを取り外します</u>。
- 7. <u>ファンケージを取り外します</u>。
- 8. DIMMブランクを取り外します。

- 9. DIMMを取り付けます。
 - a. DIMMスロットのラッチを開きます。
 - b. DIMM下端のノッチをDIMMスロットのキーの付いた部分に合わせ、DIMMをスロットに完全に押し込みます。ラッチが所定の位置に戻るまで押し込んでください。

DIMMスロットはモジュールが正しく取り付けられるような構造になっています。DIMMをスロットに簡単に挿入できない場合は、方向などが間違っている可能性があります。DIMMの向きを逆にしてから、改めて差し込んでください。

- 10. <u>ファンケージを取り付けます</u>。
- 11. <u>エアバッフルを取り付けます</u>。
- 12. <u>アクセスパネルを取り付けます。</u>
- 13. <u>サーバーをラックに取り付けます。</u>
- 14. 周辺装置のすべてのケーブルをサーバーに接続します。
- 15. 各電源コードを電源ソースに接続します。

- 16. 各電源コードをサーバーに接続します。
- 17. <u>サーバーの電源を入れます</u>。
- 18. メモリ設定を構成するには、以下を行います。
 - a. ブート画面で、F9キーを押して、UEFIシステムユーティリティにアクセスします。
 - b. システムユーティリティ画面で、システム構成<u>></u>BIOS/プラットフォーム構成(RBSU)<u>></u>メモリオプションを選択し ます。

タスクの結果

取り付け手順は完了です。

ネットワーク

サブトピック

<u>OCPスロットの取り付けルール</u> <u>OCP NICアダプターの取り付け</u> <u>PCIe NICアダプターをライザーケージに取り付ける</u> <u>PCIe NICアダプターをGPUケージに取り付ける</u>

OCPスロットの取り付けルール

番号	スロット番号	サポートされているハードウェアコンポーネント
1	スロット27 OCP A PCIe5 x8/x16	 タイプoストレージコントローラー OCP NICアダプター
2	スロット28 OCP B PCIe5 x8 ¹ /x16	 タイプoストレージコントローラー OCP NICアダプター OCPリタイマーカード

HPE ProLiant Compute DL380a Gen12ユーザーガイド 108
OCP NICアダプターの取り付け

前提条件

- <u>OCPスロットの取り付けルール</u>を確認します。
- この手順を実行する前に、次のものを用意しておきます。
 - T-10トルクスドライバー
 - 。 OCP帯域幅アップグレードケーブルキット:
 - スロット27 OCP A PCIe5 x8またはx16構成の場合 P74694-B21
 - スロット28 OCP B PCIe5 x16構成の場合 P74696-B21

このタスクについて

注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

∧ 注意

ポートブランクはEMIシールドを提供し、サーバー内の適切な熱状態を維持するのに役立ち ます。対応するI/Oポートオプションが取り付けられていない状態でポートブランクが取り 外されている場合は、サーバーを操作しないでください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>セカンダリライザーケージを取り外します</u>。
- 9. スロット27 OCP Aにアダプターを取り付ける場合は、プライマリライザーケージを取り外します。
- 10. ネジを取り外してから、OCPスロットブランクを取り外します。

- 11. OCP NIC 3.0アダプターを取り付けます。
 - a. 固定ピンをオープン(縦)位置まで回します。
 - b. カチッとはまるまで、アダプターをスロットにスライドさせます。
 アダプターがスロットにしっかりと固定されていることを確認します。
 - c. 固定ピンをクローズ(横)位置まで回します。

- 12. <u>OCP帯域幅アップグレードケーブルを接続します</u>。
- 13. 取り外している場合は、プライマリケージを取り付けます。
- 14. <u>セカンダリライザーケージを取り付けます</u>。
- 15. リア通気パネルを取り付けます。
- 16. <u>アクセスパネルを取り付けます</u>。
- 17. <u>サーバーをラックに取り付けます</u>。

- 18. 周辺装置のすべてのケーブルをサーバーに接続します。
- 19. 各電源コードをサーバーに接続します。
- 20. 各電源コードを電源ソースに接続します。
- 21. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

PCIe NICアダプターをライザーケージに取り付ける

前提条件

この手順を実行する前に、T-10トルクスドライバーを用意しておきます。

このタスクについて

> 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

🔿 注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのPCIeスロットに必ず、ライザースロットブランクか拡張カードのいずれかを実装してから、サーバーを動作させてください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 以下の手順を実行します。
 - a. <u>PCIe x16キャプティブライザー信号ケーブルをシステムボードから外します</u>。
 - b. PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーから外します。
- 9. <u>ライザーケージを取り外します</u>。
- 10. ライザースロットブランクを取り外します。

- 11. 拡張カードのスイッチまたはジャンパーが正しく設定されていることを確認します。
 詳しくは、拡張カードオプションに付属のドキュメントを参照してください。
- 12. PCIe NICアダプターを取り付け、ネジを固定します。

アダプターがスロットにしっかりと固定されていることを確認します。

- 13. すべての必要な内部ケーブルをPCIe NICアダプターに接続します。
- 14. <u>ライザーケージを取り付けます</u>。
- 15. 以下の手順を実行します。
 - a. PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーに接続します。
 - b. <u>PCIe x16キャプティブライザー信号ケーブルをシステムボードに接続します</u>。
- 16. リア通気パネルを取り付けます。
- 17. エアバッフルを取り付けます。
- 18. <u>サーバーをラックに取り付けます</u>。
- 19. 周辺装置のすべてのケーブルをサーバーに接続します。
- 20. 各電源コードをサーバーに接続します。

- 21. 各電源コードを電源ソースに接続します。
- 22. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

PCIe NICアダプターをGPUケージに取り付ける

前提条件

この手順を実行する前に、T-10トルクスドライバーを用意しておきます。

このタスクについて

🔿 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのPCIeスロットに必ず、ライザースロットブランクか拡張カードのいずれかを実装してから、サーバーを動作させてください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. (オプション)アダプターNICポートケーブルを接続するには、<u>フロント通気パネルを取り外します</u>。
- 8. 2本の固定ネジを緩めて、GPUケージからGPUのトップブラケットを取り外します。

9. PCIeスロットブランクを取り外します。

10. PCIe NICアダプターをGPUケージに取り付けます。

拡張カードがスロットにしっかりと固定されていることを確認します。

- 11. すべての必要な内部ケーブルをPCIe NICアダプターに接続します。
- 12. GPUトップ ブラケットをGPUケージに取り付け、2本の固定ネジを締めます。

- 13. アクセスパネルを取り付けます。
- 14. <u>サーバーをラックに取り付けます</u>。
- 15. 周辺装置のすべてのケーブルをサーバーに接続します。
- 16. 各電源コードをサーバーに接続します。
- 17. 各電源コードを電源ソースに接続します。
- 18. <u>サーバーの電源を入れます</u>。

取り付け手順は完了です。

OSブートデバイス

サブトピック

<u>HPE NS204i-uブートデバイスV2オプション</u>

HPE NS204i-uブートデバイスV2オプション

HPE NS204i-uブートデバイスV2オプションに関する次の情報に注意してください。

- HPE NS204i-u V2 NVMeホットプラグ対応ブート最適化ストレージデバイスは、ホットプラグ対応2280 M.2 NVMe SSDを2 台搭載したPCIeカスタムフォームファクターモジュールです。
- このブートデバイスを使用すると、展開されたOSを専用のハードウェアRAID 1を介してミラーリングできます。
- ブートデバイスは起動時にRAID1ボリュームを自動的に作成します。これは、ブートデバイスがそれ以上のRAID構成を必要としないことを意味します。
- このブートデバイスは、次のネイティブOSと互換性があります。
 - Windows
 - ∘ Linux
 - VMware
- このブートデバイスは、ネイティブインボックスOS NVMeドライバーを使用します。

サブトピック

<u>NS204i-u有効化オプション</u> <u>HPE NS204i-uブートデバイスV2を取り付ける</u>

NS204i-u有効化オプション

NS204i-uブートデバイスを取り付けるにはブートデバイス有効化オプションキット(P75284-B21)が必要です。 このキットには、次のものが含まれます。

- ブートデバイスSlimSASケーブルおよび電源ケーブル
- ブートデバイスブラケットおよびバッフル
- ブートデバイスケージ

HPE NS204i-uブートデバイスV2を取り付ける

前提条件

• ブートデバイスケージの取り付け中は、必ず適切な人数でGPUケージを持ち上げたり固定したりする作業を行ってくださ

い。GPUケージにPCIe x16キャプティブライザーが装備されている場合は、さらに2人の作業者が必要になります:2人が GPUケージをシャーシの前端より上に持ち上げて保持し、もう1人がブートデバイスケージをサーバーに取り付けます。

- サーバーが最新のオペレーティングシステムファームウェアとドライバーでアップデートされていることを確認してく ださい。
- <u>HPE NS204i-uブートデバイスV2コンポーネントを特定します</u>。
- この手順を実行する前に、次のものを用意しておきます。
 - 。 <u>NS204i-u有効化オプションキット</u>
 - 。 T-10トルクスドライバー
 - 。 T-15トルクスドライバー
 - プラスドライバー(No.1):このツールは、M.2 SSDがブートデバイスキャリアにあらかじめ取り付けられていない 場合にのみ必要です。

このタスクについて

🔨 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

▲ 注意

不適切な冷却および高温による装置の損傷を防止するために、サーバーすべてのベイに必 ず、コンポーネントかブランクのどちらかを実装してからを動作させてください。

!) 重要

適切なRAID 1構成を確保するために、ブートデバイスのSSDが同じ部品番号であることを確認してください。SSDモデルの混在はサポートされていません。

手順

ブートデバイスにドライブを取り付ける

1. ブートデバイスキャリアを取り外します。

- a. ラッチを押したままにします。
- b. ラッチを回転させて開きます。
- c. キャリアをスライドさせてブートデバイスケージから引き出します。

- 2. ブートデバイスキャリアにSSDを取り付けます。
 - a. SSD取り付けネジを取り外します。

- b. SSDを45度の角度でM.2スロットに挿入します。
- c. SSDを水平位置までゆっくりと押し下げます。
- d. SSDの取り付けネジを取り付けます。

- 3. ブートデバイスキャリアを取り付けます。
 - a. キャリアラッチが閉じている場合は、回転させて開きます。
 - b. キャリアをスライドさせてブートデバイスケージに挿入します。
 - c. ラッチを回転させて閉じます。

キャリアラッチがブートデバイスケージにロックされていることを確認します。

ブートデバイスを取り付ける

- 4. <u>サーバーの電源を切ります</u>。
- 5. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。

- b. 各電源コードをサーバーから抜き取ります。
- 6. すべての周辺ケーブルをサーバーから抜き取ります。
- 7. <u>サーバーをラックから取り外します</u>。
- 8. サーバーを平らで水平な面に置きます。
- 9. 取り付けられている場合、フロントベゼルを取り外します。
- 10. <u>アクセスパネルを取り外します</u>。
- 11. <u>エアバッフルを取り外します</u>。
- 12. <u>ファンケージを取り外します</u>。
- 13. <u>左側のケーブルトラフカバーを取り外します</u>。
- 14. <u>GPUケージからすべてのGPUを取り外します</u>。
- 15. ブートデバイスをブラケットに取り付けます。

16. ブートデバイスブラケットを多目的ケージに取り付けます。

- 17. ブートデバイスに信号ケーブルと電源ケーブルを接続します。
- 18. 以下のいずれかを実行します。
 - GPUケージにキャプティブライザーが取り付けられている場合、GPUケージをシャーシの前端より上に持ち上げて保持します。
 - GPUケージにスイッチボードが取り付けられている場合、GPUケージを取り外します。
- 19. 2つのネジを取り外してから、ドライブボックスブランクを取り外します。

20. ブートデバイスケージをサーバーに取り付けます。

- 21. <u>ブートデバイスの信号ケーブルと電源ケーブルをシステムボードに接続します</u>。
- 22. ブートデバイスの信号ケーブルと電源ケーブルをケーブルトラフに通してから、<u>左側のケーブルトラフカバーを取り付</u> <u>けます</u>。
- 23. <u>GPUケージとGPUを取り付けます</u>。
- 24. ファンケージを取り付けます。
- 25. <u>エアバッフルを取り付けます</u>。
- 26. <u>アクセスパネルを取り付けます。</u>
- 27. <u>サーバーをラックに取り付けます。</u>
- 28. 周辺装置のすべてのケーブルをサーバーに接続します。
- 29. 各電源コードをサーバーに接続します。
- 30. 各電源コードを電源ソースに接続します。
- 31. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

電源装置

サブトピック

<u>分電盤</u> <u>電源装置オプション</u>

分電盤

このサーバーには2つの分電盤(PDB)があり、GPUパワードメインを分離して制御します。

サブトピック

PDB 2の取り付け

PDB 2の取り付け

前提条件

この手順を実行する前に、T-10トルクスドライバーを用意しておきます。

このタスクについて

このサーバーは2つのPDBをサポートします。PDB 1は、サーバーに取り付けられているデフォルトのPDBです。16シングル幅 GPU構成と8ダブル幅GPU構成にはPDB 2を取り付ける必要があります。

> 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>プライマリライザーケージを取り外します</u>。
- 9. PDBブラケットを取り外します。

10. PDBをブラケットに取り付けます。

11. PDBをサーバーに取り付けます。

- 12. <u>M-CRPS 2、4、6、および8を取り付けます</u>。
- 13. 以下のケーブルをPDB 2に接続します:
 - a. <u>ケーブルホルダーカバーを取り外します。</u>
 - b. <u>GPU補助電源ケーブルを接続します</u>。
 - c. PCIe x16スイッチボード電源ケーブルを接続します。
 - d. GPU補助電源ケーブルとスイッチボード電源ケーブルをケーブルトラフに通してから、<u>ケーブルトラフカバーを取り</u> 付けます。
 - e. <u>側波帯信号ケーブルを接続します</u>。
- 14. <u>プライマリライザーケージを取り付けます</u>。
- 15. リア通気パネルを取り付けます。
- 16. <u>アクセスパネルを取り付けます</u>。
- 17. <u>サーバーをラックに取り付けます</u>。
- 18. 周辺装置のすべてのケーブルをサーバーに接続します。
- 19. 各電源コードをサーバーに接続します。
- 20. 各電源コードを電源ソースに接続します。
- 21. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

電源装置オプション

取り付けられたオプションや、サーバーを購入した地域によって、サーバーはサポートされる<u>電源装置</u>のいずれかで構成さ れます。 サブトピック

<u>ホットプラグ対応電源装置に関する計算</u> <u>電源装置に関する警告と注意事項</u> <u>電源装置のガイドライン</u> <u>電源装置の取り付け</u>

ホットプラグ対応電源装置に関する計算

ホットプラグ対応電源装置の仕様、およびサーバーの電気ならびに熱負荷を調べるための計算ツールについては、Hewlett Packard Enterprise Power AdvisorのWebサイト (<u>https://www.hpe.com/info/poweradvisor/online</u>) を参照してくださ い。

電源装置に関する警告と注意事項

警告

感電または装置の損傷を防ぐために、以下の点に注意してください。

- 電源コードのアース用プラグは常に取り付けてください。アース用プラグは安全上必要です。
- 電源コードは、いつでも簡単に手の届くところにあるアース付きコンセントに接続して ください。
- 装置の電源を切る場合は、電源コードを電源装置から抜き取ってください。
- 電源コードは、踏みつけられたり、上や横に物が置かれて圧迫されることがないように 配線してください。プラグ、電源コンセント、サーバーと電源コードの接続部には、特 に注意してください。

警告

感電を防止するために、電源装置のカバーを開けないようにしてください。メンテナンス、 アップグレード、および修理はすべて資格のある担当者に依頼してください。

注意

異なるタイプの電源装置を同じサーバー内に混在させると、次のようになる場合がありま す:

- 電源の冗長性のサポートを含む一部の電源装置の機能が制限されたり無効になる。
- システムが不安定になり、シャットダウンすることがある。

使用可能なすべての機能にアクセスできるようにするには、同一サーバー内のすべての電源 装置の出力と効率を同じ定格にする必要があります。すべての電源装置の部品番号とラベル の色が一致することを確認してください。

電源装置のガイドライン

このサーバーでは、電源の冗長性をサポートするために3つの電源装置ドメインが構成されています。サーバーは、5つまたは8つの電源装置の取り付けをサポートします。

- システムドメインには、1 + 1冗長性をサポートする2つの電源装置があります。1つの電源装置に障害が発生した場合:
 - 。 システムは非冗長電力モードに切り替わります。システムは、このモードで動作します。
 - システムヘルスLEDがオレンジ色に点滅します。

2番目の電源装置に障害が発生すると、システムヘルスLEDが赤色で点滅し、オペレーティングシステムは直ちにシャットダウンします。

- GPUドメイン1または2には、2 + 1冗長性をサポートする3つの電源装置があります。1つの電源装置に障害が発生した場合:
 - システムは非冗長電力モードに切り替わります。システムは、このモードで動作します。
 - システムヘルスLEDがオレンジ色に点滅します。

2番目の電源装置に障害が発生すると、システムヘルスLEDが赤色に点滅します。

異なるドメイン内の電源装置冗長性は互いに独立しています。

電源装置の取り付け

前提条件

電源装置オプションを取り付ける前に、以下の記載をお読みください。

- <u>電源装置に関する警告と注意事項</u>
- <u>電源装置のガイドライン</u>

このタスクについて

警告 表面が熱くなっているため、やけどをしないように、電源装置、電源装置ブランク、または デュアルスロット電源装置アダプターが十分に冷めてから手を触れてください。

手順

1. 電源装置ベイのブランクを取り外します。

- 2. 電源装置が所定の位置にカチッと収まるまで、すぐにベイにスライドさせて押し込みます。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

3. 電源コードを電源装置に接続します。

設備の電力位相のバランスが取れていることを確認してください。バランスが取れていないと回路ブレーカーがトリップする可能性があります。

- 4. 電源装置のハンドルに取り付けられたストレインリリーフストラップで電源コードを固定します。
 - a. ストレインリリーフストラップを電源装置のハンドルから外します。

注意 電源コードまたはサーバーのケーブルの内部ワイヤーの損傷を防止するために、きつく 曲げることは避けてください。電源コードやサーバーのケーブルを被覆材にしわができ るほどきつく曲げないでください。

- b. 電源コードをストレインリリーフストラップで固定します。ストラップの余っている部分を電源装置のハンドルの周 囲に巻き付けます。
 - 60-mm M-CRPS

• 73.5-mm M-CRPS

- 5. 各電源コードをサーバーに接続します。
- 6. <u>各電源コードを電源装置に接続します</u>。
- 7. 電源装置LEDが緑色に点灯していることを確認します。

タスクの結果

取り付け手順は完了です。

プロセッサーとヒートシンク

サブトピック

<u>プロセッサーに関する注意事項</u> プロセッサーヒートシンクアセンブリの取り付け

プロセッサーに関する注意事項

注意 プロセッサーやシステムボードの損傷を防止するために、この サーバー のプロセッサーの 交換や取り付けは、認定された担当者のみが行ってください。

注意

サーバーの誤動作や装置の損傷を防止するために、マルチプロセッサー構成では、必ず、同 じ部品番号のプロセッサーを使用してください。

注意

プロセッサーソケットとプロセッサーのピンは非常に壊れやすく、簡単に損傷します。コン ポーネントの損傷を避けるために、これらのピンには触れないでください。ピンが壊れる と、システムボードやプロセッサーの交換が必要になる場合があります。

!) 重要

プロセッサーソケット1には必ずプロセッサーを取り付けてください。ソケット1にプロセッサーが取り付けられていない場合、サーバーは動作しません。

!) 重要

以前より高速のプロセッサーを取り付ける場合は、プロセッサーを取り付ける前に、システ ムROMをアップデートしてください。ファームウェアをダウンロードする場合は、ファーム ウェアまたはシステムROMのアップデートを参照してください。

プロセッサーヒートシンクアセンブリの取り付け

前提条件

- <u>ヒートシンクとプロセッサーソケットコンポーネントを特定します</u>。
- <u>プロセッサーに関する注意事項を確認します</u>。

この手順を実行する前に、T-30トルクスドライバー、またはトルクドライバーとT-30トルクスビットを用意しておきます。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. <u>エアバッフルを取り外します</u>。
- 8. <u>ファンケージを取り外します</u>。
- 9. サーマルインターフェイスマテリアルから保護フィルムを取り外します。

注意 機械的損傷を防いだり、手指の油分やその他の汚れがヒートシンクの接触面に付かないようにするため、ヒートシンクはベースプレートの端だけでお持ちください。ヒートシンクのフィンに手を触れないでください。

10. 傾き防止ワイヤーをロック位置に設定します。

プロセッサーがプロセッサーキャリアにしっかりと固定されていることを確認します。
 次の図は、プロセッサーを固定するキーイング機能タブを示しています。これらのタブの位置は、プロセッサーキャリ

次の図は、プロセッサーを固定するキーインク機能タフを示しています。これらのタフの位直は、プロセッサーキャリ アによって異なります。

- 12. ヒートシンクをプロセッサーキャリアに接続します。
 - a. プロセッサーキャリアとヒートシンクとでピン1インジケーターを揃えます。

b. プロセッサーキャリアのタブが所定の位置にカチッと収まるまで、ヒートシンクをキャリアの上に下ろします。
 ヒートシンクがプロセッサーキャリアに正しく固定されたことを示すカチッという音がします。

- 13. 次の確認手順を実行します。
 - a. プロセッサーキャリアのタブがヒートシンクにしっかりと固定されていることを確認します。

b. プロセッサーとプロセッサーキャリアのピン1インジケーターが揃っていることを確認します。

c. プロセッサーがキャリアのスナップで正しく固定されていることを確認します。

- 14. プロセッサーソケットからダストカバーを外します。
 - a. ダストカバーのグリップタブを押したままにします。
 - b. ダストカバーを持ち上げてボルスタープレートから取り外します。
 カバーは、将来使用できるように保管しておいてください。

15. プロセッサーヒートシンクモジュールを取り付けます。

🔨 注意

温度劣化またはコンポーネントの損傷を防ぐため、ヒートシンクのベースプレートの下部 がプロセッサーの上部に触れたら、ヒートシンクを動かさないでください。ヒートシンク の動きが大きすぎると、サーマルグリースが汚れて不均一になる可能性があります。コン パウンドのボイドは、プロセッサーからの熱伝導に悪影響を与える可能性があります。

- a. トルクドライバーを使用してヒートシンクのネジを締める場合は、トルク0.9 N-m (8 in-lb)に設定します。
- b. ヒートシンクラベルの**サーバーの前面**のテキストに注意して、ボルスタープレート上でプロセッサーヒートシンクモ ジュールを正しい向きにします。
- c. ボルスタープレートのガイドポストにプロセッサーヒートシンクモジュールを慎重に下ろします。

モジュールを一方向にのみ取り付けることができるように、ポストにはキーが付いています。ネジを固定する前に、モジュールがボルスタープレートに正しく取り付けられていることを確認してください。

d. 傾き防止ワイヤーをロック位置に設定します。

e. 対角線上にある1組のヒートシンクネジを締めて、次にもう1組のヒートシンクネジを締めます。

- 16. <u>ファンケージを取り付けます</u>。
- 17. エアバッフルを取り付けます。
- 18. <u>アクセスパネルを取り付けます。</u>
- 19. <u>サーバーをラックに取り付けます</u>。
- 20. 周辺装置のすべてのケーブルをサーバーに接続します。
- 21. 各電源コードをサーバーに接続します。
- 22. 各電源コードを電源ソースに接続します。
- 23. <u>サーバーの電源を入れます</u>。

取り付け手順は完了です。

ラックマウントオプション

クイックデプロイ、工具不要のHPEラックレールオプションを使用して、サーバーを標準4ポストラックに取り付けます。 レール設計では、<u>さまざまなマウントインターフェイス</u>のラックへの取り付けをサポートしています。

ケーブル管理のために、ラックレールキットには<u>ケーブルマネジメントアーム</u>オプションが含まれています。

サブトピック

<u>レール識別マーカー</u> <u>ラックマウントインターフェイス</u> <u>CMAコンポーネント</u> <u>ラックレールのオプション</u> <u>ラックへのサーバーの取り付け:ボールベアリングラックレール</u> ケーブルマネジメントアームの取り付け

レール識別マーカー

ラックレールオプションのサポートは、次の2つの要因によって異なります。

- フロントエンドおよびリアエンドサーバー構成によって決まる、シャーシの高さと重量。
- フロントパネル(フロントベゼルなし)の端からリアパネルの端までを測定したシャーシの奥行き。

ラックレールとサーバー間の互換性を確保するために、シャーシのレール番号ラベルがレールに表記されているものと一致 していることを確認してください。

シャーシのレール番号ラベル

インナーレールのレール識別子スタンプ

マウンティングレールのレール識別子スタンプ

ラックマウントインターフェイス

ラックレールは、次のマウントインターフェイスを備えたラックに取り付けることができます。

この手順で使用する図は、画像の右上隅にアイコンを表示します。このアイコンは、画像に描かれているアクションが有効 なマウントインターフェイスのタイプを示します。

CMAコンポーネント

番号	説明
1	インナーレール
2	CMAインナーレールブラケッ ト
3	アウターレール
4	CMAアウターレールブラケッ ト
5	ケーブルバスケット
6	CMAエルボブラケット

ラックレールのオプション

このサーバーはHPEボールベアリングラックレールオプションキット#13 (P69770-B21)をサポートしています。このレール キットは次の仕様に対応しています。

- タイプ:ボールベアリングラックレール (スタブイン)
- 最小レール長さ:845.67 mm (33.29インチ)
- レール調整範囲:609.60~918.10 mm (24.00~36.15インチ)

サブトピック

<u>ボールベアリングラックレールを取り付ける</u>

ボールベアリングラックレールを取り付ける

前提条件

• この手順を実行する前に、以下を参照してください。

- 空間および通気要件
- <u>ラックに関する警告と注意事項</u>
- 。 サーバーに関する警告と注意事項
- 完全に実装されたサーバーは重量があります。Hewlett Packard Enterpriseでは、外部シャーションポーネントを取り 外してから、ラックにサーバーを取り付けることをお勧めします。
- ラックマウンティングレールをネジ穴ラックに取り付ける場合は、次のいずれかのアイテムが揃っていることを確認してください。
 - 。 T-25トルクスドライバー
 - 。 小型マイナスドライバー

手順

1. サーバーとレールのレールIDが一致していることを確認します。

2. マウンティングレールからインナーレールを取り外します。

a. インナーレールをマウンティングレールから完全に伸びるまで伸ばします。

b. ラッチを押したまま、インナーレールをスライドさせてマウンティングレールから完全に引き出します。

- c. もう一方のインナーレールでも手順1~2を繰り返します。
- 3. インナーレールをサーバーに取り付けます。
 - a. サーバー側面のスプールをレールの逆挿入防止スロットに挿入します。
 - b. レールをリアパネルに向かってスライドさせて固定します。

4. マウンティングレールの方向マーカーを確認します。

レールの前端には、FRONT LEFTまたはFRONT RIGHTとマークされています。

- 5. マウンティングレールをラックの奥行きに合わせて伸ばします。
- 6. マウンティングレールを丸穴または角穴ラックに取り付けるには、取り付けフランジのピンをラックポストの穴に挿入 します。

- 7. マウンティングレールを丸ネジ穴ラックに取り付けるには、以下の手順を実行します。
 - a. マウンティングレールからピンとワッシャーを取り外します。

- b. 取り付けフランジの穴とラックポストのネジ穴の位置を合わせます。
- c. ラックの取り付けネジを取り付けます。

8. <u>サーバーをラックに取り付けます</u>。

ラックへのサーバーの取り付け:ボールベアリングラックレール

前提条件

- ラックへの取り付け中は、必ず適切な人数でサーバーを持ち上げたり固定したりする作業を行ってください。サーバーを胸より高く持ち上げるときは、サーバーを設置するために作業者がさらに2人必要になる場合があります。1人がサーバーの重量を支え、別の2人がサーバーをスライドさせてラックに押し込みます。
- この手順を実行する前に、以下を参照してください。
 - 。 空間および通気要件
 - 。 ラックに関する警告と注意事項
 - <u>サーバーに関する警告と注意事項</u>
- 完全に実装されたサーバーは重量があります。Hewlett Packard Enterpriseでは、外部シャーションポーネントを取り 外してから、ラックにサーバーを取り付けることをお勧めします。
- この手順を実行する前に、T-25トルクスドライバーを用意しておきます。

手順

1. レールをロック位置まで完全に伸ばします。

- 2. サーバーをラックに取り付けます。
 - a. インナーレールをスライドレールに挿入します。
 - b. 後端のレールリリースラッチを押したまま、シャーシイヤーがラックのポストにぴったりくっつくまでサー バーをラック内にスライドさせます。

3. シャーシイヤーを開き、輸送用ネジを締めます。

- 4. 周辺装置のすべてのケーブルをサーバーに接続します。
- 5. 各電源コードをサーバーに接続します。
- 6. 各電源コードを電源ソースに接続します。

ケーブルマネジメントアームの取り付け

前提条件

- この手順を実行する前に、以下を確認してください。
 - 。 ラックに関する警告と注意事項
 - 。 <u>CMAコンポーネント</u>
- T-25トルクスドライバー このツールは、シャーシイヤー内にある輸送用ネジを緩めたり締めたりする場合に必要です。

このタスクについて

ケーブルマネジメントアーム(CMA)を使用すると、システムの電源を切ったり、リアパネルケーブルを抜いたりしなくて も、サーバーをラックから完全に引き出すことができます。このCMAは、右開きと左開きの両方の実装に対応するよう設計 されています。

この手順では、左右はラックの前面に向かって見たときの方向です。

2 注意 取り外しおよび交換手順の際は、CMAを支えてください。手順中にCMAが自重でぶら下がらな いようにしてください。

注意

ケーブルマネジメントラッチまたはレールリリースラッチを押す際には、けがをしないよう に十分に注意してください。レールまたはラッチに指をはさむ場合があります。

手順

- 1. すべての周辺装置のケーブルと電源コードをリアパネルに接続して固定します。
- 2. (オプション) CMA固定用ブラケットを回転させて、左側または右側のCMA操作に合わせることができます。回転機構を 押したまま、ブラケットを180°回転させます。

ブラケットが調整された位置でロックされたことを示すカチッという音がします。

ブラケットの回転方向は、使用しているCMAモジュールによって異なります。

• 回転ボタンがあるCMA

• 回転ラッチがあるCMA

3. CMAブラケットをインナーレールとアウターレールに取り付けます。

4. ケーブルバスケットを開きます。

5. ケーブルを取り付けます。

注意

CMAに固定された周辺ケーブルと電源コードの管理には、業界のベストプラクティスを採用してください。これらはさらに重要なポイントのいくつかです。

- リアパネルとCMAの間に十分なケーブルのたるみを残して、サーバーをラックから引き 出す際に、CMAを完全に引き出せるようにします。
- ただし、CMA内に余分なケーブルのたるみがないようにしてください。これにより、 ケーブルがからまり、ケーブルが損傷する可能性があります。
- ケーブルと電源コードが、それらが接続されているサーバーの上部または底部を越えて伸びていないことを確認してください。さもないと、サーバーをラックから引き出すか戻すときに、ラックに取り付けられている他の機器にケーブルが引っかかる可能性があります。

6. すべてのバスケットを閉じます。

7. エルボブラケットをアウターレールに取り付けます。

- 8. ラックレールの動作を確認します。
 - a. <u>ラックからシャーシを完全に引き出します</u>。
 - b. シャーシを完全に引き出しても、ケーブルと電源コードに十分なたるみがあることを確認します。ケーブルが絡んだ り折れたりしていないことを確認します。
 - c. ケーブルとコードが適切に固定されていることを確認するには、シャーシをスライドさせてラックから出し入れしま す。周辺ケーブルと電源コードが誤って外れる恐れがないことを確認してください。
- 9. シャーシイヤーがラックポストにぴったり接するまで、サーバーをスライドさせてラックに押し込みます。
- 10. (オプション)シャーシイヤーラッチを開き、輸送用ネジを締めます。

タスクの結果

取り付け手順は完了です。

ライザー

サブトピック

<u>キャプティブライザーケーブルの取り付け</u> <u>拡張カードの取り付け</u>

キャプティブライザーケーブルの取り付け

前提条件

この手順を実行する前に、次のものを用意しておきます。

- T-10トルクスドライバー
- T-15トルクスドライバー
- プラスドライバー (No. 1)

このタスクについて

注意 人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

手順

1. <u>サーバーの電源を切ります</u>。

- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>プライマリライザーケージを取り外します</u>。
- 9. PCIe x16ベースライザーを取り外します。

10. ライザーネジブラケットを取り外します。

11. PCIe x16キャプティブライザーを取り外します。

12. キャプティブライザーケーブルを取り付けます。

13. PCIe x16キャプティブライザーをライザーケージに取り付けます。

14. ライザーネジブラケットを取り付けます。

15. PCIe x16ベースライザーを取り付けます。

- 16. <u>プライマリライザーケージを取り付けます</u>。
- 17. リア通気パネルを取り付けます。
- 18. <u>エアバッフルを取り付けます</u>。
- 19. <u>サーバーをラックに取り付けます</u>。
- 20. 周辺装置のすべてのケーブルをサーバーに接続します。
- 21. 各電源コードをサーバーに接続します。
- 22. 各電源コードを電源ソースに接続します。
- 23. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

拡張カードの取り付け

前提条件

この手順を実行する前に、T-10トルクスドライバーを用意しておきます。

このタスクについて

注意 人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

🔨 注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのPCIeスロットに必ず、ライザースロットブランクか拡張カードのいずれかを実装してから、サーバーを動作させてください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. 以下の手順を実行します。
 - a. <u>PCIe x16キャプティブライザー信号ケーブルをシステムボードから外します</u>。
 - b. <u>PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーから外します</u>。
- 9. <u>ライザーケージを取り外します</u>。
- 10. ライザースロットブランクを取り外します。

- 11. 拡張カードのスイッチまたはジャンパーが正しく設定されていることを確認します。
 詳しくは、拡張カードオプションに付属のドキュメントを参照してください。
- 12. 拡張カードを取り付け、ネジを固定します。

拡張カードがスロットにしっかりと固定されていることを確認します。

- 13. 必要な内部ケーブルをすべて拡張カードに接続します。
- 14. <u>ライザーケージを取り付けます</u>。
- 15. 以下の手順を実行します。
 - a. PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーに接続します。
 - b. PCIe x16キャプティブライザー信号ケーブルをシステムボードに接続します。
- 16. リア通気パネルを取り付けます。
- 17. <u>エアバッフルを取り付けます</u>。
- 18. <u>サーバーをラックに取り付けます</u>。
- 19. 周辺装置のすべてのケーブルをサーバーに接続します。
- 20. 各電源コードをサーバーに接続します。

21. 各電源コードを電源ソースに接続します。

22. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

セキュリティ

サブトピック

<u>フロントベゼルオプションの取り付け</u> <u>シャーシ侵入検知スイッチのオプション</u>

フロントベゼルオプションの取り付け

手順

- 1. フロントベゼルを右側のシャーシイヤーに接続します。
- 2. フロントベゼルのリリースラッチを押し続けます。
- 3. フロントベゼルを閉じます。

(オプション) Kensingtonセキュリティロックを取り付けます。
 詳しくは、ロックのドキュメントを参照してください。

タスクの結果

取り付け手順は完了です。

シャーシ侵入検知スイッチのオプション

シャーシ侵入検知スイッチにより、アクセスパネルが物理的に開かれたり取り外されたりするたびに、iLOではインテグレーテッドマネジメントログ(IML)にイベントが記録されます。また、シャーシ侵入が検知されるたびに、BIOSにアラートが送信されます。シャーシ侵入検知は、サーバーが接続されている間は、サーバーの電源がオンであるかオフであるかに 関係なく発生します。

サブトピック

シャーシ侵入検知スイッチの取り付け

シャーシ侵入検知スイッチの取り付け

前提条件

この手順を実行する前に、T-15トルクスドライバーを用意しておきます。

このタスクについて

注意 人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. <u>エアバッフルを取り外します</u>。
- 8. <u>ファンケージを取り外します</u>。
- 9. 以下の手順を実行します。
 - a. 左側のケーブルトラフカバーを取り外します。

b. 左側のケーブルトラフを取り外します。

10. 左側のDIMMガードを取り外します。

- 11. シャーシ侵入検知スイッチを取り付けます。
 - a. カチッと音がしてスイッチが所定の位置に収まるまで、スイッチタブをシャーシスロットに挿入します。
 - b. スイッチケーブルを接続します。

12. 左側のDIMMガードを取り付けます。

- 13. 以下の手順を実行します。
 - a. 左側のケーブルトラフを取り付けます。

b. 左側のケーブルトラフカバーを取り付けます。

- 14. ファンケージを取り付けます。
- 15. エアバッフルを取り付けます。
- 16. <u>アクセスパネルを取り付けます</u>。
- 17. <u>サーバーをラックに取り付けます</u>。
- 18. 周辺装置のすべてのケーブルをサーバーに接続します。
- 19. 各電源コードをサーバーに接続します。
- 20. 各電源コードを電源ソースに接続します。
- 21. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

ストレージ

サブトピック <u>OCPリタイマーカードの取り付け</u>

OCPリタイマーカードの取り付け

前提条件

この手順を実行する前に、OCPスロットの取り付けルールを確認してください。

このタスクについて

注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意

ポートブランクはEMIシールドを提供し、サーバー内の適切な熱状態を維持するのに役立ち ます。対応するI/Oポートオプションが取り付けられていない状態でポートブランクが取り 外されている場合は、サーバーを操作しないでください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>セカンダリライザーケージを取り外します</u>。
- 9. ネジを取り外してから、OCPスロットブランクを取り外します。

- 10. 0CPリタイマーカードを取り付けます。
 - a. 固定ピンをオープン(縦)位置まで回します。
 - b. カチッとはまるまで、アダプターをスロットにスライドさせます。

アダプターがスロットにしっかりと固定されていることを確認します。

c. 固定ピンをクローズ(横)位置まで回します。

- 11. <u>SlimSASケーブルをリタイマーカードに接続します</u>。
- 12. <u>セカンダリライザーケージを取り付けます</u>。
- 13. リア通気パネルを取り付けます。
- 14. <u>サーバーをラックに取り付けます</u>。
- 15. 周辺装置のすべてのケーブルをサーバーに接続します。
- 16. 各電源コードをサーバーに接続します。
- 17. 各電源コードを電源ソースに接続します。
- 18. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

ストレージコントローラー

サブトピック

<u>タイプoストレージコントローラーの取り付け</u> <u>タイプpストレージコントローラーの取り付け</u>

タイプoストレージコントローラーの取り付け

前提条件

- <u>OCPスロットの取り付けルール</u>を確認します。
- この手順を実行する前に、次のものを用意しておきます。
 - <u>互換性のあるコントローラーのケーブル</u>

このタスクについて

へ 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意

ポートブランクはEMIシールドを提供し、サーバー内の適切な熱状態を維持するのに役立ち ます。対応するI/Oポートオプションが取り付けられていない状態でポートブランクが取り 外されている場合は、サーバーを操作しないでください。

手順

- 1. <u>サーバーの電源を切ります</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーをラックから取り外します</u>。
- 5. サーバーを平らで水平な面に置きます。
- 6. <u>アクセスパネルを取り外します</u>。
- 7. リア通気パネルを取り外します。
- 8. <u>セカンダリライザーケージを取り外します</u>。
- 9. スロット27 OCP Aにコントローラーを取り付ける場合は、プライマリライザーケージを取り外します。
- 10. ネジを取り外してから、OCPスロットブランクを取り外します。

- 11. タイプoストレージコントローラーを取り付けます。
 - a. 固定ピンをオープン(縦)位置まで回します。
 - b. カチッとはまるまで、コントローラーをスロットにスライドさせます。

コントローラーがスロットにしっかりと固定されていることを確認します。

c. 固定ピンをクローズ(横)位置まで回します。

- 12. <u>タイプoコントローラーを接続します</u>。
- 13. 取り外している場合は、プライマリケージを取り付けます。
- 14. <u>セカンダリライザーケージを取り付けます</u>。
- 15. リア通気パネルを取り付けます。
- 16. <u>アクセスパネルを取り付けます</u>。
- 17. <u>サーバーをラックに取り付けます</u>。
- 18. 周辺装置のすべてのケーブルをサーバーに接続します。
- 19. 各電源コードをサーバーに接続します。
- 20. 各電源コードを電源ソースに接続します。
- 21. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

タイプpストレージコントローラーの取り付け

前提条件

 ストレージコントローラーオプションのフラッシュバック式ライトキャッシュ(FBWC)機能を有効にするには、Energy Packを取り付けます。

コントローラーキャッシュ機能について詳しくは、Hewlett Packard EnterpriseのWebサイト (<u>https://www.hpe.com/info/quickspecs</u>) でコントローラーのQuickSpecsを参照してください。

• この手順を実行する前に、次のものを用意しておきます。

- 。 <u>互換性のあるコントローラーのケーブル</u>
- T-10トルクスドライバー

このタスクについて

🔨 注意

人間の指など、導電体からの静電気放電によって、システムボードなどの静電気に弱いデバ イスが損傷することがあります。装置の損傷を防止するために、<u>静電気防止の注意事項</u>に 従ってください。

注意

不適切な冷却および高温による装置の損傷を防止するために、すべてのPCIeスロットに必ず、ライザースロットブランクか拡張カードのいずれかを実装してから、サーバーを動作させてください。

手順

- 1. <u>すべてのサーバーデータをバックアップします</u>。
- 2. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 3. すべての周辺ケーブルをサーバーから抜き取ります。
- 4. <u>サーバーの電源を切ります</u>。
- 5. すべての電源を取り外します。
 - a. 各電源コードを電源から抜き取ります。
 - b. 各電源コードをサーバーから抜き取ります。
- 6. すべての周辺ケーブルをサーバーから抜き取ります。
- 7. <u>サーバーをラックから取り外します</u>。
- 8. サーバーを平らで水平な面に置きます。
- 9. <u>アクセスパネルを取り外します</u>。
- 10. リア通気パネルを取り外します。
- 11. 以下の手順を実行します。
 - a. PCIe x16キャプティブライザー信号ケーブルをシステムボードから外します。
 - b. PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーから外します。
- 12. <u>ライザーケージを取り外します</u>。
- 13. ライザースロットブランクを取り外します。

14. タイプpコントローラーを取り付け、ネジを締めます。

コントローラーがスロットにしっかりと固定されていることを確認します。

- 15. タイプpストレージコントローラーをケーブル接続します。
 - <u>SFF (2.5型) ドライブ構成</u>
- 16. ストレージコントローラーのFBWC機能を有効にするには、Energy Packを取り付けます。
- 17. <u>ライザーケージを取り付けます</u>。
- 18. 以下の手順を実行します。
 - a. PCIe x16キャプティブライザー電源ケーブルをキャプティブライザーに接続します。
 - b. PCIe x16キャプティブライザー信号ケーブルをシステムボードに接続します。
- 19. リア通気パネルを取り付けます。
- 20. <u>エアバッフルを取り付けます</u>。
- 21. <u>サーバーをラックに取り付けます</u>。
- 22. 周辺装置のすべてのケーブルをサーバーに接続します。
- 23. 各電源コードをサーバーに接続します。

24. 各電源コードを電源ソースに接続します。

25. <u>サーバーの電源を入れます</u>。

タスクの結果

取り付け手順は完了です。

ケーブル接続

この章には、内部コンポーネントのケーブル接続に関するケーブル接続のガイドラインと図が含まれています。

サブトピック

<u>ケーブル接続のガイドライン</u> ケーブル配線図 内部ケーブル管理 GPUのケーブル接続 フロントPCIe x16キャプティブライザーのケーブル接続 <u>リアPCIe x16キャプティブライザーのケーブル接続</u> <u>ストレージのケーブル接続</u> HPE NS204i-uブートデバイスV2のケーブル接続 <u>DPUの電源ケーブル接続</u> 側波帯ボードのケーブル接続 <u>ファンのケーブル接続</u> <u>Intel UPIのケーブル接続</u> 0CP帯域幅の有効化のケーブル接続 <u>シリアルポートのケーブル接続</u> シャーシ侵入検知スイッチのケーブル接続 <u>フロントI/0のケーブル接続</u> PDUのケーブル接続

ケーブル接続のガイドライン

次の注意事項に従ってください。

🖉 注記

ケーブル配線図の色は、説明目的でのみ使用されます。

- ケーブルオプションキットについては、製品のQuickSpecsを参照してください。
- ケーブルのスペア部品番号については、メンテナンス&サービスガイドの図による部品カタログを参照してください。
- 一部の図では、A、B、Cなどのアルファベット順のコールアウトを示しています。これらのコールアウトは、ケーブルの コネクター近くのラベルに対応しています。
- Yケーブルなど、一部のケーブルには複数のコネクターがありますが、すべてのコネクターが使用されるわけではありません。
- サーバーケーブルを取り扱う際は、すべてのガイドラインを守ってください。

ケーブルを接続する前

 PCAコンポーネントのポートラベルに注意してください。すべてのサーバーがすべてのコンポーネントを使用するわけで はありません。 。システムボードのポート

- 。 ドライブおよび電源装置バックプレーンのポート
- 拡張ボードのポート(コントローラー、リタイマー、アダプター、エキスパンダー、ライザーなどのボード)
- 各ケーブルコネクター付近のラベルに注意してください。このラベルは、ケーブルコネクターの接続先ポートを示します。
- 一部のデータケーブルは事前に曲がっています。ケーブルを伸ばしたり、操作したりしないでください。
- 機械的損傷を防いだり、手指の油分やその他の汚れが付かないようにするため、コネクターの終端には触らないようにしてください。

ケーブルの接続時

- ケーブルをポートに接続する前に、所定の場所にケーブルを置いて、ケーブルの長さを確認します。
- 内部ケーブル管理機能を使用し、ケーブルを適切に配線し、固定します。
- ケーブルを配線する際には、ケーブルがはさまれたり折り曲げられたりする可能性のない位置に配線してください。
- 電源コードまたはサーバーのケーブルの内部ワイヤーの損傷を防止するために、きつく曲げることは避けてください。
 電源コードやサーバーのケーブルを被覆材にしわができるほどきつく曲げないでください。
- 余分な長さのケーブルを適正に固定して、曲げすぎたり邪魔になったり、通気が制限されないようにしてください。
- コンポーネントの損傷や信号干渉を防ぐため、すべてのケーブルが正しい配線位置にあることを確認した後で新しいコンポーネントを取り付け、ハードウェアの取り付け/保守後にサーバーを閉じてください。

ケーブルを取り外す場合

- ケーブルコネクターの本体をしっかりと持ちます。ケーブル本体は引っ張らないようにしてください。ケーブルを引っ 張ると、ケーブル内部のワイヤーや、ポートのピンが損傷を受けることがあります。
- ケーブルをスムーズに取り外せない場合は、ケーブルを取り外すために使われるリリースラッチの有無を確認してください。

使用しないケーブルを取り外します。サーバーの中に残したままにしておくと、通気の妨げになることがあります。取り外したケーブルを後から使用する場合は、再利用できるようラベルを付けて保管してください。

ケーブル配線図

次の注意事項に従ってください。

- コンポーネントを配線する前に、ケーブル接続のガイドラインを参照してください。
- ケーブルの部品番号または検索機能を使用して、図を見つけます。

コンポーネントのケーブル接続	ケーブルの部品番号
GPUのケーブル接続	-
2フロントキャプティブライザー信号ケーブル	<u>P71884-001</u>
2フロントキャプティブライザー電源ケーブル	<u>P72258-001</u>

コンポーネントのケーブル接続	ケーブルの部品番号
4フロントキャプティブライザー信号ケーブル	<u>P71884–001</u>
4フロントキャプティブライザー電源ケーブル	<u>P72258–001</u>
2スイッチボードの信号ケーブル接続	<u>P74338-001</u>
2スイッチボードの電源ケーブル接続	<u>P74337-001</u>
2スイッチボードの側波帯ケーブル接続	<u>P73979-001</u>
4スイッチボード信号ケーブル	<u>P74338-001</u>
4スイッチボード電源ケーブル	 <u>P74337-001</u> <u>P74898-001</u>
4スイッチボード側波帯ケーブル	<u>P73979–001</u>
4スイッチボードカスケード信号ケーブル	<u>P74339–001</u>
2ダブル幅GPU補助電源ケーブル	・ 8ピン: <u>P72036-001</u> ・ 16ピン: <u>P72037-001</u>
4ダブル幅GPU補助電源ケーブル	・ 8ピン : <u>P72036-001</u> ・ 16ピン : <u>P72037-001</u>
8タフル幅GPU補助電源ケーフル	 8ピン: <u>P74944-001</u> <u>P72036-001</u> 16ピン: <u>P75018-001</u> <u>P72037-001</u>
フロントNICのケーブル接続	 <u>P71887-001</u> <u>P71886-001</u> <u>P76956-001</u>
リアPCIe x16キャプティブライザーのケーブル接続	-
リアPCIe x16キャプティブライザー信号ケーブル	 <u>P71886-001</u> <u>P71883-001</u>
リアPCIe x16キャプティブライザー電源ケーブル	<u>P72033–001</u>
ストレージコントローラーのケーブル接続	-
4 SFF (2.5型) NVMe x4ドライブ直接接続ケーブル	<u>P72034–001</u>
8 SFF (2.5型) NVMe x4ドライブ直接接続ケーブル:2リア PCIeスロット	<u>P73978–001</u>
8 SFF (2.5型) NVMe x4ドライブ直接接続ケーブル:4リア PCIeスロット	 <u>P72034-001</u> <u>P72035-001</u>

コンポーネントのケーブル接続	ケーブルの部品番号
8 SFF (2.5型) NVMe x4ドライブ直接接続ケーブル:バラン ス1/0を備えた2ダブル幅GPU構成用	<u>P74900-001</u>
8 SFF (2.5型) NVMe x4ドライブ直接接続ケーブル : 非バラ ンスI/0を備えた2ダブル幅GPU構成用	<u>P74900-001</u>
8 SFF (2.5型) NVMe x4ドライブケーブル:タイプoコント ローラー	<u>P72035-001</u>
8 SFF (2.5型) NVMe x4ドライブケーブル:タイプpコント ローラー	<u>P74805–001</u>
4 E3.S直接接続ケーブル	• <u>P72034-001</u>
	• <u>P72035-001</u>
8 E3.S直接接続ケーブル	<u>P73978-001</u>
16 E3.S直接接続ケーブル	<u>P78766-001</u>
ドライブの電源ケーブル接続	-
4 SFF(2.5型)ドライブ電源ケーブル	<u>P72029–001</u>
8 SFF(2.5型)ドライブ電源ケーブル	• P72029-001
	• <u>P72030-001</u>
4 E3.S電源ケーブル	<u>P72029–001</u>
8 E3.S電源ケーブル	<u>P72029-001</u>
16 E3.S電源ケーブル	 <u>P72029-001</u> <u>P72030-001</u>
Energy Packのケーブル接続	• P01367-B21
	• <u>P02381–B21</u>
ストレージコントローラーのバックアップ電源ケーブル接	• タイプoコントローラー・P72038-001
170	 タイプpコントローラー: <u>P72038-001</u>
HPE NS204i-uブートデバイスV2のケーブル接続	_
NS204i-u電源ケーブル	<u>P48956-001</u>
NS204i-u信号ケーブル	<u>P74839-001</u>
側波帯ボードのケーブル接続	• P72027-001
	• <u>P72028-001</u>
ファンのケーブル接続	<u>P72032-001</u>
Intel UPIのケーブル接続	• P72257-001
	• P72259-001
	• <u>P74340-001</u>

コンポーネントのケーブル接続	ケーブルの部品番号
OCP帯域幅アップグレードのケーブル接続	 <u>P72256-001</u> <u>P72031-001</u>
シリアルポートのケーブル接続	-
シリアルポートのドングル	<u>P73744-001</u>
ixポートケーブル	<u>P71826-001</u>
シャーシ侵入検知スイッチのケーブル接続	<u>P54901-001</u>
フロントI/0のケーブル接続	<u>P71909–001</u>

内部ケーブル管理

番号	説明
1	ケーブルクリップ
2	ケーブルトラフ

GPUのケーブル接続

サブトピック

<u>2フロントキャプティブライザーのケーブル接続 4フロントキャプティブライザーのケーブル接続 2スイッチボードのケーブル接続 4スイッチボードのケーブル接続 ダブル幅GPUの補助電源ケーブル接続</u>

2フロントキャプティブライザーのケーブル接続

ライザーの信号ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P71884-001	オレンジ色	スロット15 PCIeキャプティ ブライザー	• M-XIOポート2 (P2) ¹
			 M-XIOポート0 (P3) ¹
	青色	スロット17 PCIeキャプティ ブライザー	• M-XIOポート5 (P2) ¹
			 M-XIOポート7 (P3) ¹

1 カッコで囲まれたテキスト(P#)は、ライザー信号ケーブルコネクター上のマーカーを指します。

ライザーの電源ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P72258-001	オレンジ色	 スロット16 PCIeキャプ ティブライザー電源コネ クター¹ 	M-PIC電源コネクター1
	青色	 スロット18 PCIeキャプ ティブライザー電源コネ クター¹ 	M-PIC電源コネクター4

 $_1$ コネクターはPCIeキャプティブライザー上に配置されています

4フロントキャプティブライザーのケーブル接続

ライザーの信号ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P71884-001	オレンジ色	スロット13 PCIeキャプティ ブライザー	 M-XIOポート4 (P2)¹ M-XIOポート6 (P3)¹
	青色	スロット15 PCIeキャプティ ブライザー	 M-XIOポート2 (P2) ¹ M-XIOポート0 (P3) ¹
	金色	スロット17 PCIeキャプティ ブライザー	 M-XIOポート5 (P2) ¹ M-XIOポート7 (P3) ¹
	ピンク色	スロット19 PCIeキャプティ ブライザー	 M-XIOポート3 (P2)¹ M-XIOポート1 (P3)¹

1 カッコで囲まれたテキスト(P#)は、ライザー信号ケーブルコネクター上のマーカーを指します。

ライザーの電源ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P72258-001	オレンジ色	 スロット13 PCIeキャプ ティブライザー電源コネ クター¹ 	M-PIC電源コネクター1
	 スロ ティ クタ 	 スロット15 PCIeキャプ ティブライザー電源コネ クター¹ 	
	青色	 スロット17 PCIeキャプ ティブライザー電源コネ クター¹ 	M-PIC電源コネクター4
		 スロット19 PCIeキャプ ティブライザー電源コネ クター¹ 	

 $_1$ コネクターはPCIeキャプティブライザー上に配置されています

2スイッチボードのケーブル接続

スイッチボードの信号ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P74338-001	オレンジ色	スロット13~16 PCIeスイッ チボードアップストリームセ カンダリMCIO	M-XIOポート2
	青色	スロット13~16 PCIeスイッ チボードアップストリームプ ライマリMCIO	M-XIOポートO
	金色	スロット17~20 PCIeスイッ チボードアップストリームセ カンダリMCIO	M−XIOポート5
	ピンク色	スロット17~20 PCIeスイッ チボードアップストリームプ ライマリMCIO	M-XIOポート7

スイッチボードの電源ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P74337-001	オレンジ色	スロット13~16 PCIeスイッ チボード電源コネクター	スロット13~16 PCIeスイッ チボード用のM-PIC電源コネ クター
	青色	スロット17~20 PCIeスイッ チボード電源コネクター	スロット17~20 PCIeスイッ チボード用のM-PIC電源コネ クター

スイッチボードの側波帯ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P73979-001	オレンジ色	スロット13~16 PCIeスイッ チボード側波帯信号コネク ター	CB1 SB
P74339-001	青色	スロット13~16 PCIeスイッ チボードカスケード信号コネ クター	スロット17~20 PCIeスイッ チボード側波帯信号コネク ター

1 側波帯ボード上のシルクスクリーンマーカー

4スイッチボードのケーブル接続

スイッチボードの信号ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P74338-001	オレンジ色	スロット9/11 PCIeスイッチ ボード	● M-XIOポート4
		 アップストリームセカン ダリMCIO 	• M-XIOポート6
		 アップストリームプライ マリMCIO 	
	青色	スロット13/15 PCIeスイッチ ボード	 M-XI0ポート2
		 アップストリームセカン ダリMCIO 	• M-X10ポート0
		 アップストリームプライ マリMCIO 	
	金色	スロット17/19 PCIeスイッチ ボード	 M-X10ポート5
		 アップストリームセカン ダリMCIO 	• M-XIOポート7
		 アップストリームプライ マリMCIO 	
	ピンク色	スロット21/23 PCIeスイッチ ボード	 M-X10ポート3
		 アップストリームセカン ダリMCIO 	• M-XIOポート1
		 アップストリームプライ マリMCI0 	

スイッチボードの電源ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P74337-001	青色	スロット13/15 PCIeスイッチ ボード電源コネクター	スロット13/15 PCIeスイッチ ボード用のM-PIC電源コネク ター
	金色	スロット17/19 PCIeスイッチ ボード電源コネクター	スロット17/19 PCIeスイッチ ボード用のM-PIC電源コネク ター
P74898-001	オレンジ色	スロット9/11 PCIeスイッチ ボード電源コネクター	スロット9/11 PCIeスイッチ ボード用のM-PIC電源コネク ター
	ピンク色	スロット21/23 PCIeスイッチ ボード電源コネクター	スロット21/23 PCIeスイッチ ボード用のM-PIC電源コネク ター

PCIe x16スイッチボードの側波帯ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P73979-001	オレンジ色	スロット9/11 PCIeスイッチ ボード側波帯信号コネクター	CB1 SB
P74339-001	青色	スロット9/11 PCIeスイッチ ボードカスケード信号コネク ター	スロット13/15 PCIeスイッチ ボード側波帯信号コネクター
	金色	スロット13/15 PCIeスイッチ ボードカスケード信号コネク ター	スロット17/19 PCIeスイッチ ボード側波帯信号コネクター
	ピンク色	スロット17/19 PCIeスイッチ ボードカスケード信号コネク ター	スロット21/23 PCIeスイッチ ボード側波帯信号コネクター

1 側波帯ボード上のシルクスクリーンマーカー

ダブル幅GPUの補助電源ケーブル接続

ケ	ーブルの部品番号	色	接続元	接続先
•	8ピン補助電源ケーブル:	オレンジ色	スロット15のGPU	スロット15のGPU用M-PIC電源 コネクター
	P/2036-001	青色	スロット17のGPU	スロット17のGPU用M-PIC電源
•	16ピン補助電源ケーブ ル : P72037-001			コネクター

4ダブル幅GPU

ケ-	- ブルの部品番号	色	接続元	接続先
•	• 8ピン補助電源ケーブル:	オレンジ色	スロット13のGPU	スロット13のGPU用M-PIC電源 コネクター
•	P72036-00116ピン補助電源ケーブ	青色	スロット15のGPU	スロット15のGPU用M-PIC電源 コネクター
ル: P72037-001	金色	スロット17のGPU	スロット17のGPU用M-PIC電源 コネクター	
		ピンク色	スロット19のGPU	スロット19のGPU用M-PIC電源 コネクター

8ダブル幅GPU

ケーブルの部品番号	色	接続元	接続先
• 8ピン補助電源ケーブル:	オレンジ色	スロット9のGPU	スロット9のGPU用M-PIC電源 コネクター
P74944-001 ● 16ピン補助電源ケーブ	黒色	スロット11のGPU	スロット11のGPU用M-PIC電源 コネクター
ル: P75018-001	青色	スロット21のGPU	スロット21のGPU用M-PIC電源 コネクター
	オレンジ色の破線	スロット23のGPU	スロット23のGPU用M-PIC電源 コネクター
 8ピン補助電源ケーブル: P72036-001 16ピン補助電源ケーブ ル:P72037-001 	金色	スロット13のGPU	スロット13のGPU用M-PIC電源 コネクター
	ピンク色	スロット15のGPU	スロット15のGPU用M-PIC電源 コネクター
	禄色	スロット17のGPU	スロット17のGPU用M-PIC電源 コネクター
	濃い紫色	スロット19のGPU	スロット19のGPU用M-PIC電源 コネクター

フロントPCIe x16キャプティブライザーのケーブル接続

キャプティブライザーの信号ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P71887-001	オレンジ色	スロット7 PCIeキャプティブ ライザー	PCIe5 x16ライザーコネク ター2
	青色	スロット8 PCIeキャプティブ ライザー	PCIe5 x16ライザーコネク ター3
	金色	スロット25 PCIeキャプティ ブライザー	PCIe5 x16ライザーコネク ター4
P71886-001	ピンク色	スロット26 PCIeキャプティ ブライザー	 M-XI0ポート17 (P3)¹ M-XI0ポート13 (P2)¹

1 カッコで囲まれたテキスト(P#)は、ライザー信号ケーブルコネクター上のマーカーを指します。

キャプティブライザーの電源ケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P76956-001	オレンジ色	 スロット8 PCIeキャプ ティブライザー電源コネ クター¹ 	M-PIC電源コネクター3
		 スロット26 PCIeキャプ ティブライザー電源コネ クター¹ 	

 $_1$ コネクターはPCIeキャプティブライザー上に配置されています

リアPCIe x16キャプティブライザーのケーブル接続

リアキャプティブライザーの信号ケーブル接続

• スロット1および4

ケーブルの部品番号	色	接続元	接続先
P71886-001	オレンジ色	セカンダリライザーケージ のキャプティブライザース ロット4	。 M-XIOポート4 (P2) ¹ 。 M-XIOポート6 (P3) ¹
	青色	プライマリライザーケージ のキャプティブライザース ロット1	 M-XIOポート3 (P2)²¹ M-XIOポート1 (P3)¹

1 カッコで囲まれたテキスト (P#) は、キャプティブライザー信号ケーブルコネクター上のマーカーを指します。

<u>2</u>カッコで囲まれたテキスト(P#)は、キャプティブライザー信号ケーブルコネクター上のマーカーを指します。

• スロット2および5

ケーブルの部品番号	色	接続元	接続先
P71883-001	オレンジ色	セカンダリライザーケージ のキャプティブライザース ロット5	PCIe5 x16ライザーコネク ター2
	青色	プライマリライザーケージ のキャプティブライザース ロット2	PCIe5 x16ライザーコネク ター4

リアキャプティブライザーの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72033-001	オレンジ色	ライザーケージのキャプティ ブライザー電源コネクター	M-PIC電源コネクター3

ストレージのケーブル接続

サブトピック

ストレージョントローラーのケーブル接続 ドライブの電源ケーブル接続 Energy Packのケーブル接続 ストレージバックアップ電源のケーブル接続

ストレージョントローラーのケーブル接続

サブトピック

<u>SFF(2.5型)ドライブストレージコントローラーのケーブル接続</u> <u>E3.Sドライブストレージコントローラーのケーブル接続</u>

SFF(2.5型)ドライブストレージコントローラーのケーブル接続
4 SFF(2.5型) NVMe x4ドライブ直接接続のケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72034-001 オレンジ色	オレンジ色	ボックス1	M-XIOポート12
	青色	ボックス3	M-XIOポート13

8 SFF (2.5型) NVMe x4ドライブ直接接続のケーブル接続:2リアPCIeスロット

このケーブル接続は、背面で2つのPCIeスロットを利用できるサーバー用です。

ケーブルの部品番号	色	接続元	接続先
P73978-001	オレンジ色 	ボックス1および2	PCIe5 x16ライザーコネク ター2
	青色	ボックス3および4	PCIe5 x16ライザーコネク ター4

8 SFF (2.5型) NVMe x4ドライブ直接接続のケーブル接続:4リアPCIeスロット

このケーブル接続は、背面で4つのPCIeスロットを利用できるサーバー用です。

ケーブルの部品番号	色	接続元	接続先
P72034-001	青色	ボックス2	M-XIOポート12
	金色	ボックス3	M-XIOポート17
	ピンク色	ボックス4	M-XIOポート13
P72035-001	オレンジ色	ボックス1	スロットBのOCPリタイマー カード上のLP SlimSASポート 1

8 SFF (2.5型) NVMe x4ドライブ直接接続のケーブル接続: バランス1/0を備えた2ダブル幅 GPU構成

この構成では、ドライブボックス1、2、およびスロット15のGPUへの信号は、CPU 0から送出されます。ドライブボックス 3、4、およびスロット17のGPUへの信号は、CPU 1から送出されます。

ケーブルの部品番号	色	接続元	接続先
P74900-001	オレンジ色	ボックス1	M-XIOポート4
	青色	ボックス2	M-XIOポート6
	金色	ボックス3	M-XIOポート3
	ピンク色	ボックス4	M-XI0ポート1

8 SFF (2.5型) NVMe x4ドライブ直接接続のケーブル接続:非バランスI/Oを備えた2ダブル幅 GPU構成

この構成では、すべての2ダブル幅GPUへの信号は、CPU 0から送出されます。すべてのドライブへの信号は、CPU 1から送出 されます。

ケーブルの部品番号	色	接続元	接続先
P74900-001	オレンジ色	ボックス1	M-XIOポート5
	青色	ボックス2	M-XIOポート7
	金色	ボックス3	M-XIOポート3
	ピンク色	ボックス4	M-XIOポート1

8 SFF (2.5型) NVMe x4ドライブのケーブル接続:タイプoコントローラー

ケーブルの部品番号	色	接続元	接続先
P72035-001	オレンジ色	ボックス1	スロット28 OCP Bのタイプo コントローラーポート1
	青色	ボックス2	スロット28 OCP Bのタイプo コントローラーポート2
	金色	ボックス3	スロット27 OCP Aのタイプo コントローラーポート1
	ピンク色	ボックス4	スロット27 OCP Aのタイプo コントローラーポート2

8 SFF (2.5型) NVMe x4ドライブのケーブル接続:タイプpコントローラー

ケーブルの部品番号	色	接続元	接続先
P74805-001	オレンジ色	ボックス1	セカンダリタイプpコント ローラーポート1
	青色	ボックス2	セカンダリタイプpコント ローラーポート2
	金色	ボックス3	プライマリタイプpコント ローラーポート1
	ピンク色	ボックス4	プライマリタイプpコント ローラーポート2

E3.Sドライブストレージコントローラーのケーブル接続

4 E3.Sドライブ直接接続のケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72034-001	オレンジ色	ボックス1、ポート1	M-XIOポート12
P72035-001	青色	ボックス1、ポート2	スロットBのOCPリタイマー カード上のLP SlimSASポート 1

8 E3.Sドライブ直接接続のケーブル接続

ケーブルの部品番号	色	接続元	接続先
P73978-001	オレンジ色	ボックス1	PCIe5 x16ライザーコネク ター2
	青色	ボックス3	PCIe5 x16ライザーコネク ター4

16 E3.Sドライブ直接接続のケーブル接続

ケーブルの部品番号	色	接続元	接続先
P78766-001	オレンジ色	ボックス1	PCIe5 x16ライザーコネク
	青色	ボックス2	- 9-2
	金色	ボックス3	PCIe5 x16ライザーコネク
	ピンク色	ボックス4	- <i>A</i> 4

ドライブの電源ケーブル接続

ドライブの電源ケーブルは、サーバーにあらかじめ取り付けられているか、該当するストレージコントローラーケーブルオ プションキットに組み込まれています。

4 SFF (2.5型) ドライブの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72029-001	オレンジ色	ボックス1の電源コネクター	ボックス1 : ドライブバック プレーン電源コネクター
	青色	ボックス3の電源コネクター	ボックス3 : ドライブバック プレーン電源コネクター

8 SFF (2.5型) ドライブの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72029-001	オレンジ色	ボックス1の電源コネクター	ボックス1 : ドライブバック プレーン電源コネクター
	青色	ボックス3の電源コネクター	ボックス3 : ドライブバック プレーン電源コネクター
P72030-001	金色	ボックス2および4の電源コネ クター	ボックス2および4 : ドライブ バックプレーン電源コネク ター

4 E3.Sドライブの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72029-001	オレンジ色	ボックス1の電源コネクター	ボックス1 : ドライブバック プレーン電源コネクター

8 E3.Sドライブの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72029-001	オレンジ色	ボックス1の電源コネクター	ボックス1 : ドライブバック プレーン電源コネクター
	青色	ボックス3の電源コネクター	ボックス3 : ドライブバック プレーン電源コネクター

16 E3.Sドライブの電源ケーブル接続

ケーブルの部品番号	色	接続元	接続先
P72029-001	オレンジ色	ボックス1の電源コネクター	ボックス1 : ドライブバック プレーン電源コネクター
	青色	ボックス3の電源コネクター	ボックス3 : ドライブバック プレーン電源コネクター
P72030-001	金色	ボックス2および4の電源コネ クター	ボックス2および4:ドライブ バックプレーン電源コネク ター

Energy Packのケーブル接続

ケーブルの色	接続元	接続先
オレンジ色	Energy Pack	Energy Packコネクター

ストレージバックアップ電源のケーブル接続 タイプoコントローラー

ケーブルの部品番号	ケーブルの色	接続元	接続先
P72038-001	オレンジ色	スロット28 OCP B	ストレージコントローラーの バックアップ電源コネクター 1
	青色	スロット27 OCP A	ストレージコントローラーの バックアップ電源コネクター 2

タイプpストレージコントローラー

ケーブルの部品番号	ケーブルの色	接続元	接続先
P72038-001	オレンジ色	スロット6	ストレージコントローラーの バックアップ電源コネクター 1
	青色	スロット3	ストレージコントローラーの バックアップ電源コネクター 2

HPE NS204i-uブートデバイスV2のケーブル接続

ケーブルの部品番号	色	接続元	接続先
P48956-001	オレンジ色	ブートデバイス電源コネク ター	NS204i-u電源コネクター
P74839-001	青色	ブートデバイス信号コネク ター	NS204i-u信号コネクター

DPUの電源ケーブル接続

フロントDPU

ケーブルの部品番号	色	接続元	接続先
P74341-001	オレンジ色	DPU電源コネクター	スロット25 PCIeキャプティ ブライザー電源コネクター

側波帯ボードのケーブル接続

コンポーネントの部品番号	色	接続元	接続先
P72028-001	オレンジ色	CB2 SB <u>1</u>	PDB 1の信号コネクター
	青色	CB3 SB <u>1</u>	PDB 2の信号コネクター
P72027-001	金色	HPM SB2 ¹	側波帯信号コネクター2
	ピンク色	HPM SB1 ¹	側波帯信号コネクター1

1 側波帯ボード上のシルクスクリーンマーカー

ファンのケーブル接続

ファンケーブルブラケットで組み立てられたファンケーブルは、サーバーにあらかじめ取り付けられています。

ケーブルの部品番号	色	接続元	接続先
P72032-001	オレンジ色	ファン2	ファンコネクター1
	青色	ファン1および3	ファンコネクター2
	金色	ファン5	ファンコネクター3
	ピンク色	ファン4および6	ファンコネクター4
	緑色	ファン8	ファンコネクター5
	濃い紫色	ファン7および9	ファンコネクター6
	黒色	ファン11	ファンコネクター7
	オレンジ色の破線	ファン10および12	ファンコネクター8

Intel UPIのケーブル接続

すべてのUPIケーブルは、サーバーにあらかじめ取り付けられています。

ケーブルの部品番号	色	接続元	接続先
P72257-001	オレンジ色	UPIコネクター5および6	UPIコネクター11および12
P72259-001	青色	UPIコネクター3および4	UPIコネクター9および10
P74340-001	金色	UPIコネクター1および2	UPIコネクター7および8

0CP帯域幅の有効化のケーブル接続

スロット27 OCP A PCIe x8構成

ケーブルの部品番号	色	接続元	接続先
P72256-001	オレンジ色	M-XIOポート17	M-XIO OCPポートA-1

スロット27 OCP A PCIe x16構成

ケーブルの部品番号	色	接続元	接続先
P72256-001	オレンジ色	M-XIOポート17	M-XIO OCPポートA-1
	青色	M-XIOポート13	M-XIO OCPポートA-2

ケーブルの部品番号色		接続元	接続先
P72031-001	オレンジ色	M-XI0ポート12	M-XIO OCPポートB

シリアルポートのケーブル接続

ケーブルの部品番号	ケーブルの色	接続元	接続先
P73744-001	オレンジ色	シリアルポートケーブルコネ クター	ixポートケーブル
P71826-001	青色	ixポートケーブル	シリアルポートのドングル

¹ このポートは<u>DC-SCM</u>上に配置されています。

シャーシ侵入検知スイッチのケーブル接続

ケーブルの部品番号	色	接続元	接続先
P54901-001	オレンジ色	シャーシ侵入検知スイッチ	シャーシ侵入検知スイッチコ ネクター

フロント1/0のケーブル接続

フロント1/0ケーブルは、サーバーにあらかじめ取り付けられています。

ケーブルの部品番号	色	接続元	接続先
P71909-001	オレンジ色	右シャーシイヤー	フロントI/0コネクター
	青色	USB 3.2 Gen 1ポート	_
	ピンク色	iL0サービスポート	-

PDUのケーブル接続

🔨 注意

以下のサポートされている構成のみを使用して、電源コードを接続してください。サポート されていない電源装置またはケーブル接続構成を使用すると、システム電源の予期しない損 失が起こる可能性があります。

電源装置のケーブル接続方法は、選択したパワーディストリビューションユニット(PDU)によって異なります。回路ブレーカーの適切な動作と機能性を確保するには、電源装置の入力電流定格がPDU内の各ブレーカー(ノード)の電流定格よりも低くなければなりません。

サーバーがサポートする電源装置とのPDUの互換性については、PDUのQuickSpecsを参照してください。

サブトピック

<u>PDUのケーブル接続:5電源装置構成</u> DPUのケーブル接続:8電源装置構成

PDUのケーブル接続:5電源装置構成

5電源装置構成には、システムドメインとGPUドメイン1があります。ラック、カプレット、ストレージの数、および入力電 圧に応じて、5電源装置構成を1つまたは2つのPDUでサポートできます。

1つのPDU

2つのPDU

DPUのケーブル接続:8電源装置構成

8電源装置構成には、システムドメインとGPUドメイン1および2があります。

構成関連情報

次の関連情報を使用して、サーバーの構成と管理に関するドキュメントを見つけます。

- 一部のユーティリティが、使用しているサーバーに適用しない場合があります。この章に記載されている製品とサーバーの互換性については、製品のQuickSpecs(<u>https://www.hpe.com/info/quickspecs</u>)を参照してください。
- HPEファクトリーエクスプレスから注文された製品は、この章の一部またはすべての構成で既に構成されている可能性が あります。追加の設定が必要かどうかを判断するには、HPEファクトリーエクスプレスの注文を確認してください。
- 最新の製品リリースノートを含む、バージョン固有のソフトウェアおよびファームウェアのドキュメントにワンストップでアクセスするには、次のクイックリンクページを参照してください。

https://www.hpe.com/support/hpeproductdocs-quicklinks

サブトピック HPMとDC-SCMのバージョン ファームウェアまたはシステムROMのアップデート サーバーの構成 ストレージコントローラーの構成 HPE NS204i-uブートデバイスV2の管理 オペレーティングシステムの展開 セキュリティの構成 サーバー管理 Linuxベースのハイパフォーマンスコンピューティングクラスターの管理

HPMとDC-SCMのバージョン

異なるサーバーSKUは、HPMとDC-SCMの特定のバージョンをサポートします。

サーバーSKU番号	HPM上のシステムROM ID	DS-SCM上のiLO ASICバージョン
P74461-B21	U70 (P68908-001)	iLO 6 ASIC (P74726-B21)
P76706-B21	U72 (P79675-001)	iLO 7 ASIC (P68823-B21)

UEFIシステムユーティリティでは、サポートされているシステムROMバージョンがシステムユーティリティ<u>></u>システム情報 <u>></u>ファームウェア情報画面に表示されます。

iLO Webインターフェイスでは、サポートされているiLOバージョンがナビゲーションツリーの右上隅に表示されます。

HPMおよびDC-SCMバージョンのサポートについて詳しくは、Hewlett Packard EnterpriseのWebサイト (<u>https://www.hpe.com/info/quickspecs</u>) にあるサーバーのQuickSpecsを参照してください。

ファームウェアまたはシステムROMのアップデート

システムファームウェアをアップデートするときには、お使いの<u>HPMとDC-SCMのバージョン</u>に固有のコンポーネントパッケージをダウンロードすることを確認してください。

- 1. <u>https://www.hpe.com/info/dl380agen12-docs</u>にアクセスします。
- 2. モデルの選択ドロップダウンメニューで、サーバーのHPMバージョンを選択します。
- 3. ドライバーおよびソフトウェアタブをクリックします。

ドライバーおよびソフトウェアタブには、選択したHPMバージョンと互換性のあるファームウェアダウンロードが一覧 表示されます。

実行する操作	使用
Service Packのダウンロード	 Service Pack for ProLiant <u>https://www.hpe.com/servers/spp/download</u> SPPとそのエコシステムの概要を理解する <u>https://www.hpe.com/support/SPP-overview-videos-en</u>
Service Packを1台のサーバーに展開する	Smart Update Manager
	<u>https://www.hpe.com/support/hpesmartupdatemanager-</u> <u>quicklinks</u>
Service Packを複数のサーバーに展開する	HPE OneView
	https://www.hpe.com/support/hpeoneview-quicklinks
単一サーバーでのiLOまたはシステムファームウェアのアッ プデート	iLOユーザーガイド <u>https://www.hpe.com/support/hpeilodocs-quicklinks</u>
	HPE Compute Ops Management
 ・	https://www.hpe.com/support/hpe-gl-com-quicklinks
 構成されたファームウェアベースラインへのサーバーの 準拠を監視する 	
• 自動iLOファームウェアアップデートを受け取る	
 ベースラインアップデートアラートを受け取る 	

サーバーの構成

構成する対象	使用
単一サーバー (GUI)	 Intelligent Provisioning <u>https://www.hpe.com/support/hpeintelligentprovisioning-</u> <u>quicklinks</u>
	• iLOリモートコンソールまたはWebインターフェイス
	https://www.hpe.com/support/hpeilodocs-quicklinks
	• UEFIシステムユーティリティ
	<u>https://www.hpe.com/support/hpeuefisystemutilities-</u> <u>quicklinks</u>
	• HPE Compute Ops Management
	https://www.hpe.com/support/hpe-gl-com-quicklinks
単-サ-バ-(スクリプト)	• RESTfulインターフェイスツール
	<u>https://www.hpe.com/support/restfulinterface/docs</u>
	• Python iLO Redfishライブラリ(python-ilorest-library)
	<u>https://github.com/HewlettPackard/python-ilorest-</u> library
	Scripting Tools for Windows PowerShell
	https://www.hpe.com/info/powershell/docs
	• iLO RESTFUL API
	https://servermanagementportal.ext.hpe.com/
	• HPE Compute Ops Management API
	https://developer.greenlake.hpe.com/
複数のサーバー(UIまたはスクリプトのいずれか)	• HPE OneView ¹
	https://www.hpe.com/support/hpeoneview-quicklinks
	• HPE Compute Ops Management
	https://www.hpe.com/support/hpe-gl-com-quicklinks
	 サーバー設定:ファームウェアベースラインなどのサー バー固有のパラメーターを定義し、それらをサーバーグ ループに適用します。
	 サーバーグループ:関連のサーバー設定でカスタム定義 セットにサーバーを編成し、グループ固有のポリシーを 適用して、グループ内のサーバー全体で一貫した構成を 作成します。

HPE OneViewを実行しているサーバーの場合、特定の設定の削除または変更には、iLOなどの別のツールを使用しないでください。HPE OneViewとiLOを使用して、同じサーバーを管理する方法について詳しくは、iLOユーザーガイド(https://www.hpe.com/support/hpeilodocs-quicklinks)を参照してください。

ストレージコントローラーの構成

コントローラータイプ	ドキュメント
HPE MR Gen11コントローラー	HPE MR Gen11コントローラーユーザーガイド
	https://hpe.com/support/MR-Gen11-UG
	構成ガイド:
	• HPE MR Storage Administrator User Guide
	https://www.hpe.com/support/MRSA
	• HPE StorCLI User Guide
	https://www.hpe.com/support/StorCLI
Intel VROC for HPE Gen12	Intel Virtual RAID on CPU for HPEユーザーガイド
	https://www.hpe.com/support/VROC-UG
	0S固有の構成ガイド:
	• Intel Virtual RAID on CPU (Intel VROC) for Windows User Guide
	<u>https://www.intel.com/content/dam/support/us/en/documents/memory-</u> and-storage/338065 Intel VROC UserGuide Windows.pdf
	• Intel Virtual RAID on CPU (Intel VROC) for Linux User Guide
	<u>https://www.intel.com/content/dam/support/us/en/documents/memory-</u> and-storage/linux-intel-vroc-userguide-333915.pdf
	• Intel Volume Management Device Driver for VMware ESXi User Guide
	<u>https://www.intel.com/content/dam/support/us/en/documents/memory-</u> <u>and-storage/ESXi-Intel-VROC-UserGuide.pdf</u>

HPE NS204i-uブートデバイスV2の管理

HPE NS204i-uブートデバイスV2のサポートされている機能とメンテナンス情報について詳しくは、 HPE NS204ブートデバイ スユーザーガイドを参照してください。

https://www.hpe.com/support/NS204-UG

オペレーティングシステムの展開

サポートされているオペレーティングシステムのリストについては、次のHPEサーバーサポート&認定マトリックスを参照してください。

https://www.hpe.com/support/Servers-Certification-Matrices
実行する操作	参照
HPE Compute Ops Managementを使用してOSを展開する	HPE Compute Ops Managementユーザーガイド
	https://www.hpe.com/support/hpe-gl-com-quicklinks
Intelligent Provisioningを使用してOSを展開する	Intelligent Provisioningユーザーガイド
	<u>https://www.hpe.com/support/hpeintelligentprovisioning-</u> <u>quicklinks</u>
iL0仮想メディアを使用してOSを展開する	iLOユーザーガイド
	https://www.hpe.com/support/hpeilodocs-quicklinks
サーバーがPXEサーバーから起動するように構成する	UEFI System Utilities User Guide for HPE Compute servers
	https://www.hpe.com/support/UEFIGen12-UG-en
サーバーがSANから起動するように構成する	HPE Boot from SAN Configuration Guide
	https://www.hpe.com/info/boot-from-san-config-guide

セキュリティの構成

実行する操作	参照
サーバーセキュリティのベストプラクティスを実装する。	• HPEコンピュートセキュリティリファレンスガイド
	<u>https://www.hpe.com/info/server-security-</u> <u>reference-ja</u>
	• HPE iLO 7セキュリティテクノロジーの概要
	<u>https://www.hpe.com/support/ilo7-security-en</u>
	• HPE iLO 6セキュリティテクノロジーの概要
	<u>https://www.hpe.com/support/ilo6-security-ja</u>
サーバー構成ロック機能が有効にされているHPE Trusted Supply Chainサーバーおよびその他のサーバーのサーバー	Server Configuration Lock User Guide for HPE ProLiant servers and HPE Synergy
慲 戍ロック機能を 備成して 使用する。	https://www.hpa.com/infa/sarvar_aanfig_laak_UG_an

https://www.hpe.com/info/server-config-lock-UG-en

サーバー管理

監視する対象	参照
単一サーバー	サーバーのSKUに応じて、このサーバーは2つの <u>異なるiLO</u> <u>ASICバージョンに対応するDC-SCMオプション</u> をサポートしま す。
	HPE iLO
	https://www.hpe.com/support/hpeilodocs-quicklinks
複数のサーバー	HPE OneView
	https://www.hpe.com/support/hpeoneview-quicklinks
単一または複数のサーバー	HPE Compute Ops Management
	<u>https://www.hpe.com/support/hpe-gl-com-quicklinks</u>

Linuxベースのハイパフォーマンスコンピューティングクラスターの管理

実行する操作	使用
クラスターのプロビジョニング、管理、および監視を行い	HPE Performance Cluster Manager
र ज 。	https://www.hpe.com/support/hpcm_manuals
アプリケーションを最適化します。	HPE Performance Analysis Tools
	https://www.hpe.com/info/perftools
オンノードとオフノードの両方で、ポイントツーポイント 通信および集合通信の低レイテンシと高帯域幅を実現する ために、ソフトウェアライブラリを最適化します。	HPE Cray Programming Environment User Guide
	https://www.hpe.com/info/cray-pe-user-guides

トラブルシューティング

サブトピック

<u>MI機能</u> フロントパネルのLED電源障害コード トラブルシューティングの資料

NMI機能

システムが従来のデバッグメソッドに応答しない場合、管理者はNMIクラッシュダンプを使用して、クラッシュダンプファ イルを作成することができます。

クラッシュダンプのログ解析は、オペレーティングシステム、デバイスドライバー、およびアプリケーションでのハングな ど、信頼性に関わる問題を診断するために重要です。クラッシュが起きると多くの場合、システムがフリーズし、管理者は システムの電源を一度切って入れ直すことしかできません。システムをリセットすると、問題の解析をサポートできる情報 が消去されます。ただし、NMIを使って、システムリセットの前にメモリダンプを実行し、その情報を保持できます。

管理者はiL0生成NMI機能を使って、OSに強制的にNMIハンドラーを開始させ、クラッシュダンプログを生成することができます。

フロントパネルのLED電源障害コード

次の表は、電源障害コードと影響を受けているサブシステムのリストを提供します。すべての電源障害がすべてのサーバー に適用されるわけではありません。

サブシステム	LEDの動作
システムボード	1回の点滅
プロセッサー	2回の点滅
メモリ	3回の点滅
ライザーボードのPCIeスロット	4回の点滅
0CPアダプター	5回の点滅
ストレージコントローラー	6回の点滅
システムボードPCleのスロット	7回の点滅
電源バックプレーン	8回の点滅
ストレージバックプレーン	9回の点滅
電源装置	10回の点滅
ライザーボードに取り付けられたPCIe拡張カード	11回の点滅
シャーシ	12回の点滅
GPUカード	13回の点滅

トラブルシューティングの資料

トラブルシューティングのサポートが必要な場合は、お使いのサーバーに関する最新の記事を参照してください。

https://www.hpe.com/info/dl380agen12-ts

安全、保証および規制に関する情報

サブトピック

<u>規定に関する情報</u>
<u>保証情報</u>

規定に関する情報

安全、環境、および規定に関する情報については、Hewlett Packard Enterpriseサポートセンターからサーバー、ストレージ、電源、ネットワーク、およびラック製品の安全と準拠に関する情報を参照してください。

https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts

規定に関する追加情報

Hewlett Packard Enterpriseは、REACH(欧州議会と欧州理事会の規則EC No 1907/2006)のような法的な要求事項に準拠す る必要に応じて、弊社製品の含有化学物質に関する情報をお客様に提供することに全力で取り組んでいます。この製品の含 有化学物質情報レポートは、次を参照してください。

https://www.hpe.com/info/reach

RoHS、REACHを含むHewlett Packard Enterprise製品の環境と安全に関する情報と準拠のデータについては、次を参照して

ください。

https://www.hpe.com/info/ecodata

企業プログラム、製品のリサイクル、エネルギー効率などのHewlett Packard Enterpriseの環境に関する情報については、 次を参照してください。

https://www.hpe.com/info/environment

サブトピック

<u>Notices for Eurasian Economic Union(ユーラシア経済連合)</u> <u>Turkey RoHS material content declaration</u> <u>Ukraine RoHS material content declaration</u>

Notices for Eurasian Economic Union (ユーラシア経済連合)

EHC

Manufacturer and Local Representative Information

Manufacturer information:

Hewlett Packard Enterprise Company, 1701 E Mossy Oaks Road, Spring, TX 77389 U.S.

Local representative information Russian:

• Russia

ООО "Хьюлетт Паккард Энтерпрайз", Российская Федерация, 125171, г. Москва, Ленинградское шоссе, 16А, стр.3, Телефон: +7 499 403 4248 Факс: +7 499 403 4677

• Kazakhstan

Т00 «Хьюлетт-Паккард (К)», Республика Казахстан, 050040, г. Алматы, Бостандыкский район, проспект Аль-Фараби, 77/7, Телефон/факс: + 7 727 355 35 50

Local representative information Kazakh:

• Russia

ЖШС "Хьюлетт Паккард Энтерпрайз", Ресей Федерациясы, 125171, Мәскеу, Ленинград тас жолы, 16А блок 3, Телефон: +7 499 403 4248 Факс: +7 499 403 4677

• Kazakhstan

ЖШС «Хьюлетт-Паккард (К)», Қазақстан Республикасы, 050040, Алматы к., Бостандык ауданы, Әл-Фараби даңғылы, 77/7, Телефон/факс: +7 727 355 35 50

Manufacturing date:

The manufacturing date is defined by the serial number.

CCSYWWZZZZ (product serial number format)

WW = Week of manufacture (calendar week)

```
Y = Year of manufacture (decade, year)
```

If you need help identifying the manufacturing date, contact <u>tre@hpe.com</u>.

Turkey RoHS material content declaration

Türkiye Cumhuriyeti: AEEE Yönetmeliğine Uygundur

Ukraine RoHS material content declaration

Обладнання відповідає вимогам Технічного регламенту щодо обмеження використання деяких небезпечних речовин в електричному та електронному обладнанні, затвердженого постановою Кабінету Міністрів України від 3 грудня 2008 № 1057

保証情報

ご使用の製品の保証に関する情報を確認するには、標準保証確認ツールを参照してください。

仕様

サブトピック

<u>環境仕様</u> <u>機械仕様</u> <u>電源装置の仕様</u>

環境仕様

忙 禄	
温度範囲	-
動作時	10° C~35° C
非動作時	-30° C∼60° C
相対湿度(ただし結露しないこと)	_
動作時	8%~90%
	28°C、最高湿球温度(結露しないこと)
非動作時	5%~95%
	38.7°C、最高湿球温度(結露しないこと)
	_
動作時	3,050m (10,000フィート)
	この値は、取り付けられているオプションのタイプや数によって制限される場合 があります。高度の許容最大変化率は457 m/分です。
非動作時	9,144 m (30,000フィート)
	高度の許容最大変化率は457m/分(1,500フィート/分)です。

-

サポートされる標準動作温度

11 14

海抜0 mで10°~35°C。海抜3,050 mまでは、高度が305 m上昇するごとに1.0°C低くなります。直射日光が当たらないよう にしてください。最大変化率は20°C/時です。上限と変化率は、取り付けられているオプションのタイプと数によって制限 される可能性があります。

気温が30°Cを超えているか、ファンが故障している場合は、標準動作のサポート中にシステムパフォーマンスが低下する ことがあります。

サポートされる拡張時の動作周囲温度

承認済みのハードウェア構成については、サポートされるシステムの吸気範囲が次のように拡大されます。

- 海抜0 mで5~10°Cおよび35~40°C。この温度は、900 m~3050 mまでは、高度が175 m上昇するごとに1.0°C低くなります。
- 海抜0 mで40°~45°C。この温度は、900 m~3,050 mまでは、高度が125 m上昇するごとに1.0°C低くなります。

このシステムの承認済みのハードウェア構成については、Extended Ambient Temperature Guidelines for HPE Gen12 Serversを参照してください。

https://www.hpe.com/support/ASHRAEGen12

機械仕様

仕様	値	
寸法	-	
高さ	17.47 cm	(6.88インチ)
奥行き	80.26 cm	(31.60インチ)
幅	44.78 cm	(17.63インチ)
重量(概算値)	-	
重量、最小	37.51 kg	(82.70ポンド)
重量、最大	60.24 kg	(132.80ポンド)

電源装置の仕様

取り付けられたオプションや、サーバーを購入した地域によって、サーバーは以下の電源装置のいずれかで構成されます。 サポートされている電源装置の仕様について詳しくは、<u>Hewlett Packard EnterpriseのWebサイト</u>にあるQuickSpecsを参照 してください。

サブトピック

HPE 1500 W M-CRPS Titaniumパワーサプライ (HPE 1500 W M-CRPS Titanium Hot-plug Power Supply) HPE 2400 W M-CRPS Titaniumパワーサプライ (HPE 2400 W M-CRPS Titanium Hot-plug Power Supply) HPE 3200 W M-CRPS Titaniumパワーサプライ (HPE 3200 W M-CRPS Titanium Hot-plug Power Supply)

HPE 1500 W M-CRPS Titaniumパワーサプライ (HPE 1500 W M-CRPS Titanium Hotplug Power Supply)

仕様	值
エネルギー効率認証	80 Plus Titanium, 96%
入力要件	-
定格入力電圧	低入力電圧:100 VAC~110 VAC
	低入力電圧:110 VAC~120 VAC
	高入力電圧: 200 VAC~240 VAC
	240 VDC (中国)
定格入力周波数	50~60 Hz
定格入力電流	12 A (100 VAC時)
	12 A (110 VAC時)
	9 A (200 VAC時)
最大定格入力電力	1000 W(100 VAC時)
	1100 W (110 VAC時)
	1500 W (200 VAC時)
BTU/時	3792 (100 VAC時)
	5560 (200 VAC時)
電源装置出力	_
安定時定格電力	低入力電圧:1000 W (100 VAC~110 VAC時)
	低入力電圧:1100 W (110 VAC~120 VAC時)
	高入力電圧:1500 W(200 VAC~240 VAC入力時)
最大ピーク電力	1000 W (100 VAC~110 VAC時)
	1100 W (110 VAC~120 VAC時)
	1500 W (200 VAC~240 VAC入力時)
寸法	
高さ	40.00 mm (1.57インチ)
奥行き	185.00 mm (7.28インチ)
幅	60.00 mm (2.36インチ)

HPE 2400 W M-CRPS Titaniumパワーサプライ (HPE 2400 W M-CRPS Titanium Hotplug Power Supply)

仕様	值
エネルギー効率認証	80 Plus Titanium, 96%
入力要件	_
定格入力電圧	低入力電圧:100 VAC~127 VAC
	高入力電圧: 200 VAC~240 VAC
	240 VDC (中国)
定格入力周波数	50~60 Hz
定格入力電流	14.5 A (100~127 VAC時)
	14.5 A (200~240 VAC時)
最大定格入力電力	1251 W (100 VAC時)
	1239 W (120 VAC時)
	1236 W (127 VAC時)
	2512 W (200 VAC時)
	2510 W (208 VAC時)
	2503 W (230 VAC時)
	2500 W (240 VAC時)
	2503 W (240 VDC時)
BTU/時	4268 (100 VAC時)
	4228 (120 VAC時)
	4219 (127 VAC時)
	8572 (200 VAC時)
	8563 (208 VAC時)
	8540 (230 VAC時)
	8532 (240 VAC時)
	8539 (240 VDC時)
電源装置出力	_
安定時定格電力	低入力電圧:1200 W (100 VAC~127 VAC時)
	高入力電圧:2400 W (200 VAC~240 VAC入力時)
最大ピーク電力	1200 W (100 VAC~127 VAC時)
	2400 W (200 VAC~240 VAC入力時)
寸法	_
ろう 高さ	40.00 mm (1.57インチ)
奥行き	185.00 mm (7.28インチ)
幅	73.50 mm (2.89インチ)

HPE 3200 W M-CRPS Titaniumパワーサプライ (HPE 3200 W M-CRPS Titanium Hotplug Power Supply)

仕様	值
エネルギー効率認証	80 Plus Titanium、96%
入力要件	-
定格入力電圧	100~127 VAC
	200~240 VAC
	240 VDC (中国)
定格入力周波数	50~60 Hz
定格入力電流	16 A (100~127 VAC時)
	16 A (200~240 VAC時)
最大定格入力電力	1504 W (100 VAC時)
	1727 W(120 VAC時)
	1723 W(127 VAC時)
	3100 W (200 VAC時)
	3207 W (208 VAC時)
	3433 W (230 VAC時)
	3429 W (240 VAC時)
	3436 W (240 VDC時)
BTU/時	5132 (100 VAC時)
	5894 (120 VAC時)
	5878(127 VAC時)
	10577 (200 VAC時)
	10941 (208 VAC時)
	11713 (230 VAC時)
	11699 (240 VAC時)
	11724 (240 VDC時)
電源装置出力	-
安定時定格電力	1600 W(100~127 VAC時)
	3200 W (200~240 VAC入力時)
最大ピーク電力	1600 W(100~127 VAC時)
	3200 W (200~240 VAC時)
寸法	-
高さ	40.00 mm (1.57インチ)
奥行き	185.00 mm (7.28インチ)
幅	73.50 mm (2.89インチ)

Webサイト

一般的なWebサイト

Single Point of Connectivity Knowledge (SPOCK) ストレージ互換性マトリックス

https://www.hpe.com/storage/spock

製品のホワイトペーパーとアナリストレポート

https://www.hpe.com/us/en/resource-library

その他のWebサイトについては、サポートと他のリソースを参照してください。

製品のWebサイト

HPE ProLiant Compute DL380a Gen12サーバーユーザードキュメント

https://www.hpe.com/info/dl380agen12-docs

サポートと他のリソース

サブトピック

<u>Hewlett Packard Enterpriseサポートへのアクセス</u> <u>HPE製品登録</u> <u>アップデートへのアクセス</u> <u>カスタマーセルフリペア (CSR)</u> <u>リモートサポート</u> <u>ドキュメントに関するご意見、ご指摘</u>

Hewlett Packard Enterpriseサポートへのアクセス

- ライブアシスタンスについては、Contact Hewlett Packard Enterprise WorldwideのWebサイトにアクセスします。 https://www.hpe.com/info/assistance
- ドキュメントとサポートサービスにアクセスするには、Hewlett Packard EnterpriseサポートセンターのWebサイトにア クセスします。

https://www.hpe.com/support/hpesc

収集される情報

- テクニカルサポートの登録番号(該当する場合)
- 製品名、モデルまたはバージョン、シリアル番号
- オペレーティングシステム名およびバージョン
- ファームウェアバージョン
- エラーメッセージ
- 製品固有のレポートおよびログ
- アドオン製品またはコンポーネント
- 他社製品またはコンポーネント

HPE製品登録

Hewlett Packard Enterpriseサポートセンターおよび購入したサポートサービスのメリットを最大限に活用するため、契約と製品をHPESCのアカウントに追加してください。

- 契約と製品を追加すると、パーソナライゼーションの強化、ワークスペースのアラート機能、ダッシュボードを通じた 有益な情報が提供され、環境の管理が容易になります。
- また、問題を自己解決するための推奨事項やカスタマイズされた製品知識も提供されるほか、ケースを作成する必要がある場合は、合理化されたケース作成によって解決までの時間が短縮されます。

契約と製品を追加する方法については、<u>https://support.hpe.com/hpesc/public/docDisplay?docId=cep-</u> <u>help_ja_jp&page=GUID-8C7F13D9-5EC3-4E5C-9DE2-A5E7823066D6.html</u>を参照してください。

アップデートへのアクセス

- 一部のソフトウェア製品では、その製品のインターフェイスを介してソフトウェアアップデートにアクセスするための メカニズムが提供されます。ご使用の製品のドキュメントで、ソフトウェアの推奨されるアップデート方法を確認して ください。
- 製品のアップデートをダウンロードするには、以下のいずれかにアクセスします。

Hewlett Packard Enterpriseサポートセンター

https://www.hpe.com/support/hpesc

マイHPEソフトウェアセンター

https://www.hpe.com/software/hpesoftwarecenter

eNewslettersおよびアラートをサブスクライブするには、以下にアクセスします。

https://www.hpe.com/support/e-updates-ja

 お客様のエンタイトルメントを表示およびアップデートするには、または契約と標準保証をお客様のプロファイルにリンクするには、 Hewlett Packard Enterpriseサポートセンター More Information on Access to Support Materialsページをご覧ください。

https://www.hpe.com/support/AccessToSupportMaterials

重要 Hewlett Packard Enterpriseサポートセンターからアップデートにアクセスするには、製品 エンタイトルメントが必要な場合があります。関連するエンタイトルメントでHPEアカウン トをセットアップしておく必要があります。

カスタマーセルフリペア (CSR)

Hewlett Packard Enterpriseカスタマーセルフリペア(CSR)プログラムでは、ご使用の製品をお客様ご自身で修理するこ とができます。CSR部品を交換する必要がある場合、お客様のご都合のよいときに交換できるよう直接配送されます。ただ し、一部の部品は、CSRが適用されません。

CSRについて詳しくは、お近くの正規保守代理店にお問い合わせください。

リモートサポート

リモートサポートは、保証またはサポート契約の一部としてサポートデバイスでご利用いただけます。リモートサポート は、インテリジェントなイベント診断を提供し、ハードウェアイベントをHewlett Packard Enterpriseに安全な方法で自動 通知します。これにより、ご使用の製品のサービスレベルに基づいて、迅速かつ正確な解決が行われます。Hewlett Packard Enterpriseでは、ご使用のデバイスをリモートサポートに登録することを強くお勧めします。

1

ご使用の製品にリモートサポートの追加詳細情報が含まれる場合は、検索を使用してその情報を見つけてください。

HPEリモートITサポートサービス接続入門

https://support.hpe.com/hpesc/public/docDisplay?docId=a00041232ja_jp

HPE Tech Care Service

https://www.hpe.com/jp/techcare

HPE Complete Care Service

https://www.hpe.com/jp/completecare

ドキュメントに関するご意見、ご指摘

Hewlett Packard Enterpriseでは、お客様により良いドキュメントを提供するように努めています。ドキュメントを改善す るために役立てさせていただきますので、何らかの誤り、提案、コメントなどがございましたら、 Hewlett Packard Enterpriseサポートセンターポータル (<u>https://www.hpe.com/support/hpesc</u>)のフィードバックボタンとアイコン (開い ているドキュメントの下部にある)からお寄せください。このプロセスにより、すべてのドキュメント情報が取得されま す。